Молекулярный профиль нейроэндокринных опухолей
https://doi.org/10.18027/2224-5057-2022-12-3s1-9-16
Аннотация
Рост заболеваемости нейроэндокринными опухолями увеличивает интерес к изучению генетического ландшафта новообразований. В большей степени нейроэндокринные опухоли (НЭО) исследованы в контексте наследственных генетических синдромов, включая гены, такие как MEN1, VHL, TSC1 / TSC2, NF1 и CDKN1B. Взаимосвязь между наследственными (генеративными) мутациями в генах системы репараций ДНК и нейроэндокринными опухолями на сегодня практически не изучена.
В условиях ГАУЗ «Республиканский клинический онкологический диспансер Министерства здравоохранения Республики Татарстан имени профессора М. З. Сигала» был изучен молекулярный профиль пациентов с диагнозом «нейроэндокринная опухоль» в зависимости от наследственного анамнеза. В проведенном исследовании у каждого четвертого пациента обнаруживались патогенные мутации. У 33 % пациентов при наличии наследственного анамнеза выявлены патогенные, либо условно-патогенные мутации
Ключевые слова
Об авторах
А. З. ИсянгуловаРоссия
Казань
М. Г. Гордиев
Россия
Санкт-Петербург
Список литературы
1. One hundred years after carcinoid : epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. / J.C. Yao, M. Hassan, A. Phan [et al.] // Clin Oncol .– 2008 .– Vol. 26 .– Р. 3063–3072.
2. Incidence of gastroenteropancreatic neuroendocrine tumours : a systematic review of the literature. / M. Fraenkel, M. Kim, A. Faggiano [et al.] // Endocr Relat Cancer .– 2014 .– Vol. 21 .– Р. 153–163.
3. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. / A. Dasari, C. Shen, D. Halperin [et al.] // JAMA Oncol .– 2017 .– Vol. 3, № 10 .– Р.1335–1342. doi:10.1001/jamaoncol.2017.0589.
4. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. / C. Roldo, E. Missiaglia, J.P. Hagan [et al.] // Clin Oncol .– 2006 .– Vol. 24, № 29 .– Р. 4677–4684.
5. Papadopoulos N. DAXX / ATRX, MEN1 and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. / Y. Jiao, C. Shi, B.H. Edil [et al.] // Science .– 2011 .– Vol. 331, № 6021 .– Р.1199–1203.
6. The genomic landscape of small intestine neuroendocrine tumors. / M.S. Banck, R. Kanwar, A.A. Kulkarni [et al.] // Clin Invest .– 2013 .– Vol. 123, № 6 .– Р. 2502–2508.
7. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. / J.M. Francis, A. Kiezun, A.H. Ramos [et al.] // Nat Genet .– 2013 – Vol. 45, № 12 .– Р.1483–1486.
8. A cross-species analysis in pancreatic neuroendocrine tumors reveals molecular subtypes with distinctive clinical, metastatic, developmental, and metabolic characteristics. / A. Sadanandam, S. Wullschleger, C.A. Lyssiotis [et al.] // Cancer Discov .– 2015 .– Vol. 5, № 12 .– Р.1296–1313.
9. DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors. / A. How-Kit, E. Dejeux, B. Dousset [et al.] // Epigenomics .– 2015 .– Vol. 7, № 8 .– Р.1245–1258.
10. Prognostic impact of novel molecular subtypes of small intestinal neuroendocrine tumor. / A. Karpathakis, H. Dibra, C. Pipinikas [et al.] // Clin. Cancer Res .– 2016 .– Vol. 22, № 1 .– Р.250–258.
11. Australian Pancreatic Cancer Genome Initiative. Whole-genome landscape of pancreatic neuroendocrine tumours. / A. Scarpa, D.K. Chang, K. Nones [et al.] // Nature .– 2017 .– Vol. 543, № 7643 .– Р.65–71. doi:10.1038/nature21063.
12. Progressive epigenetic dysregulation in neuroendocrine tumour liver metastases. / A. Karpathakis, H. Dibra, C. Pipinikas [et al.] // Endocr Relat Cancer .– 2017 .– Vol. 24, № 2 .– Р.21–25.
13. Genetic heterogeneity of primary lesion and metastasis in small intestine neuroendocrine tumors. / D. Walter, P.N. Harter, F. Battke [et al.] // Sci Rep .– 2018 .– Vol. 8, № 1 .– Р. 3811.
14. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. / C. Larsson, B. Skogseid, K. Oberg [et al.] // Nature .– 1988 .– Vol. 332 .– Р.85–87.
15. Stephen J. M. Hereditary Hormone Excess : Genes, Molecular Pathways, and Syndromes. / J. M. Stephen, F. S. William // Endocr Reviews .– Vol. 26, № 5 .– P. 615–661.
16. Binkovitz L.A. Islet cell tumors in von Hippel-Lindau disease : increased prevalence and relationship to the multiple endocrine neoplasias. / L.A. Binkovitz, C.D. Johnson, D.H. Stephens // Am J Roentgenology .– 1990 .– Vol. 155, № 3 .– Р.501–505.
17. Positional cloning of the gene for multiple endocrine neoplasia-type 1. / S.C. Chandrasekharappa, S.C. Guru, P. Manickam [et al.] // Science 276 .– 1997 .– Р.404–407.
18. Oberg K. Genetics and molecular pathology of neuroendocrine gastrointestinal and pancreatic tumors (gastroenteropancreatic neuroendocrine tumors). / K. Oberg. // Curr Opin Endocrinol Diabetes Obes .– 2009 .– Vol. 16 .– Р.72–78. doi:10.1097/med.0b013e328320d845.
19. Update on the molecular pathogenesis of pancreatic tumors other than common ductal adenocarcinoma. / D. Antonello, S. Gobbo, V. Corbo [et al.] // Pancreatology .– 2009 .– Vol. 9 .– Р.25–33.
20. Эндокринология / Под ред. Н. Лавина .– 2-е изд. Пер. с англ .– Москва : Практика, 1999 .– С. 891–897 .– 1128 с.
21. Pancreatic Neuroendocrine Tumors : Molecular Mechanisms and Therapeutic Targets. / C.K. Maharjan, P.H. Ear, C.G. Tran [et al.] // Cancers (Basel) .– 2021 .– Vol. 13, № 20 .– Р. 5117. doi:10.3390/cancers13205117.
22. Attenuated expression of menin and p27 (Kip1) in an aggressive case of multiple endocrine neoplasia type 1 (MEN1) associated with an atypical prolactinoma and a malignant pancreatic endocrine tumor. / E. Ishida, M. Yamada, K. Horiguchi [et al.] // Endocr .– 2011 .– Vol.58 .– Р.287–296.
23. Tumor suppressor menin regulates expression of insulin-like growth factor binding protein 2. / P. La, R.W. Schnepp, C.D. Petersen [et al.] // Endocrinology .– 2004 .– Vol. 145, № 7 .– Р. 3443–3450.
24. Menin, a tumor suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. / H. Kim, J.E. Lee, E.J. Cho [et al.] // Cancer Research .– 2003 .– Vol. 63, № 19 .– Р. 6135– 6139. PMID : 14559791.
25. MEN1 in pancreatic endocrine tumors : analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. / V. Corbo, I. Dalai, M. Scardoni [et al.] // Endocr Relat Cancer .– 2010 .– Vol. 17, № 3 .– Р.771–783.
26. von Hippel-Lindau disease. / R.R. Lonser, G.M. Glenn, M. Walther [et al.] // Lancet .– 2003 .– Vol. 361, № 9374 .– Р.2059– 2067. doi:10.1016/S0140-6736(03)13643-4.
27. Clinical, genetic and radiographic analysis of 108 patients with von Hippel-Lindau disease (VHL) manifested by pancreatic neuroendocrine neoplasms (PNETs). / J.A. Blansfield, L. Choyke, S.Y. Morita [et al.] // Surgery .– 2007 .– Vol. 142, № 6 .– Р.814–818.
28. Mafficini A. Genetics and Epigenetics of Gastroenteropancreatic Neuroendocrine Neoplasms. / A. Mafficini, A. Scarpa // Endocr Rev .– 2019 .– Vol. 40, № 2 .– Р.506–536.
29. VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. / A.M. Schmitt, S. Schmid, T. Rudolph [et al.] // Endocr Relat Cancer .– 2009 .– Vol. 16, № 4 .– Р.1219–1227.
30. McClatchey A.I. Neurofibromatosis. / A.I. McClatchey // Annu Rev Pathol .– 2007 .– Vol. 2, № 1 .– Р.191–216.
31. Periampullary and duodenal neoplasms in neurofibromatosis type 1 : two cases and an updated 20-year review of the literature yielding 76 cases. / D. Relles, J. Baek, A. Witkiewicz, C.J. Yeo // Gastrointest Surg .– 2010 .– Vol. 14, № 6 .– Р.1052–1061.
32. Whole-exome sequencing of duodenal neuroendocrine tumors in patients with neurofibromatosis type 1. / M. Noë, A. Pea, C. Luchini [et al.] // Mod Pathol .– 2018 .– Vol. 31, № 10 .– Р.1532–1538.
33. Identification and characterization of the tuberous sclerosis gene on chromosome 16. / European Chromosome 16 Tuberous Sclerosis Consortium. // Cell .– 1993 .– Vol. 75, № 7 .– Р.1305– 1315. doi:10.1016/0092-8674(93)90618-z.
34. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. / M. van Slegtenhorst, R. de Hoogt, C. Hermans [et al.] // Science .– 1997 .– Vol. 277, № 5327 .– Р.805–808.
35. Well-differentiated pancreatic neuroendocrine carcinoma in tuberous sclerosis--case report and review of the literature. / N.C. Arva, J.G. Pappas, T. Bhatla [et. al.] // Surg Pathol .– 2012 .– Vol. 36, № 1 .– Р.149–153.
36. The molecular genetics of gastroenteropancreatic neuroendocrine tumors. / M.N. Zikusoka, M. Kidd, G. Eick [et al.] // Cancer .– 2005 .– Vol. 104 .– Р.2292–2309.
37. The evolving (epi) genetic landscape of pancreatic neuroendocrine tumours. / C.P. Pipinikas, A.M. Berner, T. Sposito, C. Thirlwell // Endocr Relat Cancer .– 2019 .– Vol. 26, № 9 .– Р.519–544. doi:10.1530/ERC-19-0175.
38. High frequency of mutations of the PIK3CA gene in human cancers. / Y. Samuels, Z. Wang, A. Bardelli [et al.] // Science .– 2004 .– Vol. 304 .– Р.554. doi:10.1126/science.1096502.
39. Well-differentiated pancreatic neuroendocrine tumors : from genetics to therapy. / R.F. de Wilde, B.H. Edil, R.H. Hruban, A. Maitra. // Nat Rev Gastroenterol Hepatol .– 2012 .– Vol. 9, № 4 .– Р.199–208.
40. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. / O. Basturk, Z. Yang, L.H. Tang [et al.] // Am J Surg Pathol .– 2015 .– Vol. 39, № 5 .– Р.683–690. doi:10.1097/PAS.0000000000000408.
41. Pancreatic endocrine tumors : improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. / A. Scarpa, W. Mantovani, P. Capelli [et al.] // Mod Pathol .– 2010 .– Vol. 23, № 6 .– Р.824–833.
42. Are G3 ENETS neuroendocrine neoplasms heterogeneous? / F.L. Vélayoudom-Céphise, P. Duvillard, L. Foucan [et al.] // Endocr Relat Cancer .– 2013 .– Vol. 20, № 5 .– Р.649–657.
43. Comprehensive genomic profiles of small cell lung cancer. / J. George, J.S. Lim, S.J. Jang [et al.] // Nature .– 2015 .– Vol. 524, № 7563 .– Р.47–53.
44. Therapeutic priority of the PI3K / AKT / mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. / S. Umemura, S. Mimaki, H. Makinoshima [et al.] // Thorac Oncol .– 2014 .– Vol. 9, № 9 .– Р.1324–1331.
45. Comprehensive analysis of gene mutation and expression profiles in neuroendocrine carcinomas of the stomach. / R. Makuuchi, M. Terashima, M. Kusuhara [et al.] // Biomed Res. (Aligarh) .– 2017 .– Vol. 38, № 1 .– Р.19–27.
46. Genetic alterations in poorly differentiated endocrine carcinomas of the gastrointestinal tract. / S. Pizzi, C. Azzoni, D. Bassi [et al.] // Cancer .– 2003 .– Vol. 98, № 6 .– Р.1273–1282.
47. Different molecular profiles characterize well-differentiated endocrine tumors and poorly differentiated endocrine carcinomas of the gastroenteropancreatic tract. / D. Furlan, R. Cerutti, S. Uccella [et al.] // Clin Cancer Res .– 2004 .– Vol. 10, № 3 .– Р. 947–957.
48. Carcinogenesis of gastric endocrine cell carcinoma : analysis of histopathology and p53 gene alteration. / K. Nishikura, H. Watanabe, M. Iwafuchi [et al.] // Gastric Cancer .– 2003 .– Vol. 6, № 4 .– Р.203–209.
49. Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors. / M. Stefanoli, S. La Rosa, N. Sahnane [et al.] // Neuroendocrinology .– 2014 .– Vol. 100, № 1 .– Р.26–34.
50. Microsatellite unstable gastrointestinal neuroendocrine carcinomas : a new clinicopathologic entity. / N. Sahnane, D. Furlan, M. Monti [et al.] // Endocr Relat Cancer .– 2015 .– Vol. 22, № 1 .– Р.35–45.
51. Molecular characteristics of colorectal neuroendocrine carcinoma ; similarities with adenocarcinoma rather than neuroendocrine tumor. / N. Takizawa, Y. Ohishi, M. Hirahashi [et al.] // Hum Pathol .– 2015 .– Vol. 46, № 12 .– Р.1890–1900.
52. Concordance of genetic alterations in poorly differentiated colorectal neuroendocrine carcinomas and associated adenocarcinomas. / A.O. Vortmeyer, I.A. Lubensky, M.J. Merino [et al.] // Natl Cancer Inst .– 1997 .– Vol. 89, № 19 .– Р.1448–1453.
53. Colorectal poorly differentiated neuroendocrine carcinomas and mixed adenoneuroendocrine carcinomas : insights into the diagnostic immunophenotype, assessment of methylation profile, and search for prognostic markers. / S. La Rosa, A. Marando, D. Furlan [et al.] // Am J Surg Pathol .– 2012 .– Vol. 36, № 4 .– Р.601–611.
54. Loss of heterozygosity in 11q13–14 regions in gastric neuroendocrine tumors not associated with multiple endocrine neoplasia type 1 syndrome / T. D’Adda, G. Keller, C. Bordi, H. Höfler // Lab Invest.– 1999 .– Vol. 79, № 6 .– P. 671–677. PMID : 10378509.
55. CpG island methylation in carcinoid and pancreatic endocrine tumors / A.O. Chan, S.G. Kim, A. Bedeir [et al.] // Oncogene .– 2003 .– Vol. 22, № 6 .– P. 924–934.
56. DNA methyltransferases 1, 3a and 3b overexpression and clinical significance in gastroenteropancreatic neuroendocrine tumors. / M.M. Rahman, Z.R. Qian, E.L. Wang [et al.] // Hum Pathol .– 2010 .– Vol. 41 .– Р.1069–1078.
57. Alberto B. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. / B. Alberto, S. Salvatore // Clin Oncol .– 2010 .– Vol. 28 .– Р.1254–1261.
58. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. // S. Yachida, E. Vakiani, C.M. White, [et al.] // Am J Surg Pathol .– 2012 .– Vol. 36, № 2 .– Р.173–184.
59. Colorectal poorly differentiated neuroendocrine carcinomas frequently exhibit BRAF mutations and are associated with poor overall survival. / D.C. Olevian, M.N. Nikiforova, S. Chiosea [et al.] // Hum Pathol .– 2016 .– Vol. 49 .– Р.124–134.
60. Molecular characteristics of colorectal neuroendocrine carcinoma ; similarities with adenocarcinoma rather than neuroendocrine tumor / N. Takizawa, Y. Ohishi, M. Hirahashi [et al.] // Hum Pathol .– 2015 .– Vol. 46, № 12 .– Р.1890–1900.
61. Colorectal mixed adenoneuroendocrine carcinomas and neuroendocrine carcinomas are genetically closely related to colorectal adenocarcinomas. / M. Jesinghaus, B. Konukiewitz, G. Keller [et al.] // Mod. Pathol .– 2017 .– Vol. 30, № 4 .– Р.610–619.
62. In-depth mutational analyses of colorectal neuroendocrine carcinomas with adenoma or adenocarcinoma components. / C. Woischke, C.W. Schaaf, H.M. Yang [et al.] // Mod Pathol .– 2017 .– Vol. 30, № 1 .– Р.95–103.
63. Molecular profiling of neuroendocrine malignancies to identify prognostic and therapeutic markers : a Fox Chase Cancer Center Pilot Study. / N. Vijayvergia, P.M. Boland, E. Handorf [et al.] // Br J Cancer .– 2016 .– Vol. 115, № 5 .– Р.564–570.
64. Diagnostic utility of MS-MLPA in DNA methylation profiling of adenocarcinomas and neuroendocrine carcinomas of the colon–rectum. / D. Furlan, N. Sahnane, M. Mazzoni [et al.] // Virchows Arch .– 2013 .– Vol. 462, № 1 .– Р.47–56.
65. Colorectal neuroendocrine carcinomas and adenocarcinomas share oncogenic pathways. A clinico-pathologic study of 12 cases. / R. Karkouche, J.B. Bachet, J. Sandrini [et al.] // Eur J Gastroenterol Hepatol .– 2012 .– Vol. 24, № 12 .– Р.1430–1437.
66. High throughput gene sequencing reveals altered landscape in DNA damage responses and chromatin remodeling in sporadic pancreatic neuroendocrine tumors. / S. Ji, W. Yang, J. Liu [et al.] // Pancreatology .– 2018 .– Vol. 18 .– Р.318–327. doi:10.1016/j.pan.2018.01.006.
67. BRCA-associated pancreatico-biliary neoplasms : Four cases illustrating the emerging clinical impact of genotyping. / M.B. Sharma, A. Carus, L. Sunde [et al.] // Acta Oncol .– 2016 .– Vol. 55 .– Р.377–381. doi:10.3109/0284186X.2015.1044023.
68. Pancreatic endocrine tumours : mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries / V. Corbo, S. Beghelli, S. Bersani [et al.] // Ann Oncol .– 2012 .– Vol. 23, № 1 .– P. 127–134.
69. U.S. Phase I First-in-human Study of Taletrectinib (DS6051b / AB-106), a ROS1 / TRK Inhibitor, in Patients with Advanced Solid Tumors / K.P. Papadopoulos, E. Borazanci, A.T. Shaw [et al.] // Clin. Cancer Res .– 2020 .– Vol. 26 .– P. 4785– 4794.
70. Surufatinib in advanced extrapancreatic neuroendocrine tumours (SANET-ep) : A randomised, double-blind, placebo-controlled, phase 3 study. / J. Xu, L. Shen, Z. Zhou [et al.] // Lancet Oncol .– 2020 .– Vol. 21, № 11 .– P.1500–1512.
71. Surufatinib in Advanced Well-Differentiated Neuroendocrine Tumors : A Multicenter, Single-Arm, Open-Label, Phase Ib / II Trial. / J. Xu, J. Li, C. Bai [et al.] // Clin Cancer Res .– 2019 .– Vol. 25 .– P. 3486–3494.
72. Cives, M. Emerging Treatment Options for Gastroenteropancreatic Neuroendocrine Tumors / M. Cives, E. Pelle’, J. Strosberg // J Clin Med .– 2020 .– Vol. 13, № 9 (11) .– P. 3655.
73. Localization of Putative Tumor Suppressor Loci by Genome-wide Allelotyping in Human Pancreatic Endocrine Tumors. / D.C. Chung, S.B. Brown, F. Graeme-Cook [et al.] // Cancer Res .– 1998 .– Vol. 58 .– Р.3706–3711.
74. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. / A. Perren, P. Komminoth, P. Saremaslani [et al.] // Am. J. Pathol .– 2000 .– Vol. 157 .– Р.1097–1103. doi:10.1016/S0002-9440(10)64624-X.
75. The impact of PD-L1 expression in patients with metastatic GEPNETs. / S.T. Kim, S.Y. Ha, S. Lee [et al.] // J Cancer .– 2016 .– Vol. 7, № 5 .– Р.484–489. doi:10.7150/jca.13711.
76. Rb Loss and KRAS Mutation Are Predictors of the Response to Platinum-Based Chemotherapy in Pancreatic Neuroendocrine Neoplasm with Grade 3 : A Japanese Multicenter Pancreatic NEN-G3 Study. / S. Hijioka, W. Hosoda, K. Matsuo [et al.] // Clin Cancer Res .– 2017 .– Vol. 23, № 16. Р.4625–4632. doi:10.1158/1078-0432.CCR-16-3135.
77. Loss of chromatin-remodeling proteins and / or CDKN2A associates with metastasis of pancreatic neuroendocrine tumors and reduced patient survival times. / S. Roy, W.A. LaFramboise, T.C. Liu [et al.] // Gastroenterology .– 2018 .– Vol. 154 .– Р.2060–2063.
78. Real-Time Genomic Characterization of Metastatic Pancreatic Neuroendocrine Tumors Has Prognostic Implications and Identifies Potential Germline Actionability. / N. Raj, R. Shah, Z. Stadler [et al.] // JCO Precis Oncol .– 2018. PO.17.00267. doi:10.1200/PO.17.00267.
79. Genomic profiling of NETs : A comprehensive analysis of the RA- DIANT trials. / J. Yao, A. Garg, D. Chen [et al.] // Endocr Relat Cancer .– 2019 .– Vol. 26, № 4 .– Р.391–403. doi:10.1530/ERC18-0332.
Рецензия
Для цитирования:
Исянгулова А.З., Гордиев М.Г. Молекулярный профиль нейроэндокринных опухолей. Злокачественные опухоли. 2022;12(3s1):9-16. https://doi.org/10.18027/2224-5057-2022-12-3s1-9-16