Role of microRNAs in solid tumors.
https://doi.org/10.18027/2224-5057-2013-1-3-14
Abstract
Large number of studies on the role of small, non-coding the protein, RNA molecules (microRNAs) in carcinogenesis and the development of resistance to anticancer therapy published in last decade. The family of micro-RNA genes constitutes a little over 1% of the human genome, but regulates the expression of almost a third of all genes in the post-transcriptional level. With the rising attention of specialists to the personalized approach in the treatment of cancer patients, the introduction of knowledge on the role of miRNAs in the clinic in the future will allow to individualize the approach to the treatment of this complex patient population. This review provides information on the range and mechanisms of formation of micro-RNAs, analyzes the relationship between the expression profile of miRNAs and the phenotype of the tumor, as well as discusses the possible using of micro-RNAs in clinical practice.
About the Authors
M. Yu. FedyaninRussian Federation
E. O. Ignatova
Russian Federation
S. A. Tyulyandin
Russian Federation
References
1. Ambros V., Bartel B., Bartel D. P. et al. A uniform system for microRNA annotation. RNA. — 2003, 9: 277-279.
2. Rodriguez A., Griffiths-Jones S., Ashurst J. L. et al. Identification of mammalian microRNA host genes and transcription units. Genome Res. — 2004, 14, 1902-1910.
3. Kim Y. K., Kim V. N. Processing of intronic microRNAs, EMBO J. — 2007, 26, 775-783.
4. Kutter C., Svoboda P. Meeting report: miRNA, siRNA, piRNA. Knowns of the unknown. RNA Biology; October / November / December. — 2008, 5:4, 181-188.
5. http://www.mirbase.org
6. Hatfield S., Ruohola-Baker H. MicroRNA and stem cell function. Cell Tissue Res. — 2008, 331, 57-66.
7. Wu L., Fan J., Belasco J. G. MicroRNAs direct rapid deadenylation of mRNA, Proc. Natl. Acad. Sci. USA. — 2006, 103, 4034-4039.
8. Lujambio A., Calin G. A., Villanueva A. et al. A micro RNA DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. U. S.A. — 2008, 105, 13556-13561.
9. Calin G. A., Dumitru C. D., Shimizu M. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S.A. — 2002, 99, 15524-15529.
10. Lu J., Getz G., Miska E. A. et al. MicroRNA expression profiles classify human cancers. Nature. — 2005, 435, 834-838.
11. Volinia S., Calin G. A., Liu C. G. et al. A micro RNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S.A. — 2006, 103, 2257-2261.
12. Rosenfeld N., Aharonov R., Meiri E. et al. MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol. — 2008, 26, 462-469.
13. Mitra R., Bandyopadhyay S., Maulik U., Zhang M. Q. et al. SFSS Class: an integrated approach for miRNA based tumor classification. BMC Bioinform. — 2010, 11 (Suppl.1), S22.
14. Bandyopadhyay S., Mitra R., Maulik U., Zhang M. Q. et al. Development of the human cancer microRNA network. Silence. — 2010, 1, 6.
15. O’Day,E.and Lal,A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. — 2010, 12, 201
16. Sotiriou C.and Pusztai L. Gene-expression signatures in breast cancer. N. Engl. J. Med. — 2009, 360, 790-800.
17. Blenkiron C., Goldstein L. D., Thorne N. P. et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. — 2007, 8, R214.
18. Mattie M. D., Benz C. C., Bowers J. et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer. — 2006, 5, 24.
19. Lowery A. J., Miller N., Devaney A. et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2 / neu receptor status in breast cancer. Breast Cancer Res. — 2009, 11, R27.
20. Iorio M. V., Ferracin M., Liu C. G. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. — 2005, 65, 7065-7070.
21. Park S. M., Gaur A. B., Lengyelet E. et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. — 2008, 22, 894-907.
22. Baffa R., Fassan M., Volinia S. et al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J. Pathol. — 2009, 219, 214-221.
23. Uhlmann S., Zhang J. D., Schw ger A. et al. miR-200bc / 429 cluster targets PLC gamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a / 141 in breast cancer. Oncogene. — 2010, 29, 4297-4306.
24. Sachdeva M. and Mo Y. Y. miR-145-mediated suppression of cell growth, invasion and metastasis. Am. J. Transl. Res. — 2010, 2, 170-180.
25. Sempere L. F., Christensen M., Silahtaroglu A. et al. Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. — 2007, 67, 11612-11620.
26. Spizzo R., Nicoloso M. S., Lupini L. et al. miR-145 participates with TP53 in a death- promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ. — 2010, 17, 246-254.
27. Sachdeva M. and Mo Y. Y. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. — 2010, 70, 378-387.
28. Yu F., Yao H., Zhu P. et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. — 2007, 131, 1109-1123.
29. Iorio M. V., Visone R., Di Leva G. et al. MicroRNA signatures in human ovarian cancer. Cancer Res Sep, 15. — 2007; 67 (18): 8699-707.
30. Hu X., Macdonald D. M., Huettner P. C. et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol Sep. — 2009;114 (3):457-64.
31. Yang H., KongW., He L. et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. — 2008; 68: 425-33.
32. Shih K. K., Qin L. X., Tanner E. J. et al. A microRNA survival signature (MiSS) for advanced ovarian cancer, Gynecol Oncol. 121 (2011) 444-450.
33. Mathivanan S., Ji H., Simpson.R. J. et al. Exosomes: Extracellular organelles important in intercellular communication. Journal of Proteomics. 73 (2010), 1907-1920.
34. Taylor D. D., Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gyn Oncol. — 2008; 110: 13-21.
35. Aslam M. I., Taylor K., Pringle J. H., Jameson J. S.. MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg. — 2009; 96: 702-10.
36. Slaby O., Svoboda M., Fabian P. et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. — 2007; 72: 397-402.
37. Faber C., Kirchner T., Hlubek F. The impact of microRNAs on colorectal cancer. Virchows Arch. — 2009; 454: 359-67.
38. Tang J. T., Fang J. Y. MicroRNA regulatory network in human colorectal cancer. Mini Rev Med Chem. — 2009; 9: 921-6.
39. Schetter A. J., Harris C. C. Plasma microRNAs: a potential biomarker for colorectal cancer? Gut. — 2009; 58: 1318-9.
40. Biscaglia G., Panza A., Gentile A. M. et al. Role of microRNA in the pathogenesis of colorectal cancer: possible involvement of miRNA-143 and miRNA-21. Abstracts / Digestive and Liver Disease 41S (2009), S1 — S167.
41. Rossi S., Kopetz S., Davuluri R. et al. MicroRNAs, ultraconserved genes and colorectal cancers. Int J Biochem Cell Biol. — 2010 Aug;42 (8):1291-7
42. Schetter A. J., Leung S. Y., Sohn J. J. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Jama. — 2008; 299: 425-36.
43. Nielsen B. S., Jorgensen S., Fog J. et al. MicroRNA-21 is expressed in stroma of colorectal cancers and high levels identified by image analysis predict short disease-free survival in stage II colon cancer patients. EJC supplements 8, no. 5 (2010) 5-81.
44. Slaby O., Hrstka R., Sobkova K. et al. Knockdown of oncogenic microRNA-21 displays cytotoxicity in p53 wild-type colon cancer cells. 07 July 2008 abs. 306, p.78.
45. Slaby O., Svoboda M., Fabian P. et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. — 2007; 72: 397-402.
46. Akao Y., Nakagawa Y., Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. — 2006; 29: 903-6.
47. Xi Y., Shalgi R., Fodstad O., Pilpel Y., Ju J. Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res. — 2006; 12: 2014-24.
48. Nakajima G., Hayashi K., Xi Y. et al. Non-coding MicroRNAs hsa-let-7 g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics. — 2006; 3: 317-24.
49. Svoboda M., Izakovicova Holla L., Sefr R. et al. Micro-RNAs miR125b and miR137 are frequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer. Int J Oncol. — 2008; 33: 541-7.
50. Tazawa H., Tsuchiya N., Izumiya M.,
51. Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. — 2007; 104: 15472-7.
52. Diaz R., Silva J., Garcia J. M. et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer. — 2008;
53. : 794-802.
54. Li X., Zhang Y., Zhang Y. et al. Survival prediction of gastric cancer by a seven- microRNA signature. Gut. — 2010, 59, 579-585.
55. Caramuta S., Egyh zi S., Rodolfo M. et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J. Invest. Dermatol. — 2010, 130, 2062-2070.
56. Rossi S., Shimizu M., Barbarotto E. et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood. — 2010, 116, 945-952
57. Dillhoff M., Liu J., Frankel W., Croce C. et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. — 2008,
58. , 2171-2176.
59. Zhou M., Liu Z., Zhao Y. et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer1 (Bak1) expression. J. Biol. Chem. — 2010, 285, 21496-21507.
60. Giovannetti E., Funel N., Peters G. J. et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. — 2010. 70, 4528-4538.
61. Ali A., Ahmad A., Banerjee S. et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. — 2010, 70, 3606.
62. Yu J., Ohuchida K., Mizumoto K. et al. MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol. Cancer. — 2010, 9, 169.
63. Elm n J., Lindow M., Sch tz S., et al. LNA mediated microRNA silencing in non-human primates. Nature. — 2008; 452: 896-9.
64. Meng F., Henson R., Lang M. et al. Involvement of human microRNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterolgoy. — 2006; 130: 2113.
65. Krutzfeldt J., Rajewsky N., Braich R. et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. — 2005, 438: 685-689.
66. Scott G. K., Goga A., Bhaumik D. et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125 or miR-125b. J Biol Chem. — 2007; 282: 1479.
67. Liu C. G., Calin G. A., Meloon B. et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl.Acad. Sci. U. S.A. — 2004, 101, 9740-9744.
68. Margulies M., Egholm M., Altman W. E. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. — 2005, 437, 376-380.
69. Jung M., Schaefer A., Steiner I. et al. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin. Chem. — 2010, 56, 998-1006.
70. Chan E., Vez Prado D. E. and Weidhaas J. B. Cancer microRNAs: From subtype profiling to predictors of response to therapy. Trends in Molecular Medicine. Volume 17, Issue 5, 235-243, 28 February. — 2011.
71. Xu J. Z. and Wong C. W. Hunting for robust gene signature from cancer profiling data: sources of variability, different interpretations, and recent methodological developments. Cancer Lett. — 2010, 296, 9-16.
72. Peltier H. J. and Latham G. J. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. — 2008, 14, 844-852.
73. Marsit C. J., Eddy K. and Kelsey K. T. MicroRNA responses to cellular stress. Cancer Res. — 2006, 66, 10843-10848.
74. Kulshreshtha R., Ferracin M., Wojcik S. E. et al. A microRNA signature of hypoxia. Mol. Cell. Biol. — 2007, 27, 1859-1867.
75. Yazici H., Terry M. B., Cho Y. H. et al. Investigation of the miR16–1 (C > T) +7 substitutionins even different types of cancer from three ethnic groups. Journal of Oncology. Volume 2009, Article ID 827532, 4 p.
Review
For citations:
Fedyanin M.Yu., Ignatova E.O., Tyulyandin S.A. Role of microRNAs in solid tumors. Malignant tumours. 2013;(1):3-14. (In Russ.) https://doi.org/10.18027/2224-5057-2013-1-3-14