Preview

Злокачественные опухоли

Расширенный поиск

РОЛЬ МИКРО-РНК ПРИ СОЛИДНЫХ ОПУХОЛЯХ

https://doi.org/10.18027/2224-5057-2013-1-3-14

Аннотация

Последнее десятилетие сопровождается появлением большого количества исследований, посвященных роли малых, не кодирующих белок, молекул РНК (микро-РНК) в канцерогенезе и развитии резистентности к проводимой противоопухолевой терапии. Семейство генов микро-РНК составляет немногим более 1% от всего генома человека, но регулирует экспрессию почти трети всех генов на посттранскрипционном уровне. При нарастающем внимании специалистов к персонализированному подходу в лечении онкологических больных, внедрение знаний по роли микро-РНК в клинику позволит в будущем индивидуализировать подход в лечении этого сложного контингента пациентов.
В этом обзоре приводится информация о номенклатуре и механизмах образования микро-РНК, анализируется взаимосвязь между профилем экспрессии микро-РНК и фенотипом опухоли, а также обсуждается возможное применение микро-РНК в клинической практике.

Об авторах

М. Ю. Федянин
ФГБУ Российский онкологический научный центр им. Ак. Н.Н. Блохина РАМН
Россия
к.м.н., врач-онколог отделения клинической фармакологии и химиотерапии 


Е. О. Игнатова
ФГБУ Российский онкологический научный центр им. Ак. Н.Н. Блохина РАМН
Россия
аспирант отделения клинической фармакологии и химиотерапии


С. А. Тюляндин
ФГБУ Российский онкологический научный центр им. Ак. Н.Н. Блохина РАМН
Россия
д.м.н., профессор, заведующий отделением клинической фармакологии и химиотерапии


Список литературы

1. Ambros V., Bartel B., Bartel D. P. et al. A uniform system for microRNA annotation. RNA. — 2003, 9: 277-279.

2. Rodriguez A., Griffiths-Jones S., Ashurst J. L. et al. Identification of mammalian microRNA host genes and transcription units. Genome Res. — 2004, 14, 1902-1910.

3. Kim Y. K., Kim V. N. Processing of intronic microRNAs, EMBO J. — 2007, 26, 775-783.

4. Kutter C., Svoboda P. Meeting report: miRNA, siRNA, piRNA. Knowns of the unknown. RNA Biology; October / November / December. — 2008, 5:4, 181-188.

5. http://www.mirbase.org

6. Hatfield S., Ruohola-Baker H. MicroRNA and stem cell function. Cell Tissue Res. — 2008, 331, 57-66.

7. Wu L., Fan J., Belasco J. G. MicroRNAs direct rapid deadenylation of mRNA, Proc. Natl. Acad. Sci. USA. — 2006, 103, 4034-4039.

8. Lujambio A., Calin G. A., Villanueva A. et al. A micro RNA DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. U. S.A. — 2008, 105, 13556-13561.

9. Calin G. A., Dumitru C. D., Shimizu M. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S.A. — 2002, 99, 15524-15529.

10. Lu J., Getz G., Miska E. A. et al. MicroRNA expression profiles classify human cancers. Nature. — 2005, 435, 834-838.

11. Volinia S., Calin G. A., Liu C. G. et al. A micro RNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S.A. — 2006, 103, 2257-2261.

12. Rosenfeld N., Aharonov R., Meiri E. et al. MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol. — 2008, 26, 462-469.

13. Mitra R., Bandyopadhyay S., Maulik U., Zhang M. Q. et al. SFSS Class: an integrated approach for miRNA based tumor classification. BMC Bioinform. — 2010, 11 (Suppl.1), S22.

14. Bandyopadhyay S., Mitra R., Maulik U., Zhang M. Q. et al. Development of the human cancer microRNA network. Silence. — 2010, 1, 6.

15. O’Day,E.and Lal,A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. — 2010, 12, 201

16. Sotiriou C.and Pusztai L. Gene-expression signatures in breast cancer. N. Engl. J. Med. — 2009, 360, 790-800.

17. Blenkiron C., Goldstein L. D., Thorne N. P. et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. — 2007, 8, R214.

18. Mattie M. D., Benz C. C., Bowers J. et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer. — 2006, 5, 24.

19. Lowery A. J., Miller N., Devaney A. et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2 / neu receptor status in breast cancer. Breast Cancer Res. — 2009, 11, R27.

20. Iorio M. V., Ferracin M., Liu C. G. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. — 2005, 65, 7065-7070.

21. Park S. M., Gaur A. B., Lengyelet E. et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. — 2008, 22, 894-907.

22. Baffa R., Fassan M., Volinia S. et al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J. Pathol. — 2009, 219, 214-221.

23. Uhlmann S., Zhang J. D., Schw ger A. et al. miR-200bc / 429 cluster targets PLC gamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a / 141 in breast cancer. Oncogene. — 2010, 29, 4297-4306.

24. Sachdeva M. and Mo Y. Y. miR-145-mediated suppression of cell growth, invasion and metastasis. Am. J. Transl. Res. — 2010, 2, 170-180.

25. Sempere L. F., Christensen M., Silahtaroglu A. et al. Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. — 2007, 67, 11612-11620.

26. Spizzo R., Nicoloso M. S., Lupini L. et al. miR-145 participates with TP53 in a death- promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ. — 2010, 17, 246-254.

27. Sachdeva M. and Mo Y. Y. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. — 2010, 70, 378-387.

28. Yu F., Yao H., Zhu P. et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. — 2007, 131, 1109-1123.

29. Iorio M. V., Visone R., Di Leva G. et al. MicroRNA signatures in human ovarian cancer. Cancer Res Sep, 15. — 2007; 67 (18): 8699-707.

30. Hu X., Macdonald D. M., Huettner P. C. et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol Sep. — 2009;114 (3):457-64.

31. Yang H., KongW., He L. et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. — 2008; 68: 425-33.

32. Shih K. K., Qin L. X., Tanner E. J. et al. A microRNA survival signature (MiSS) for advanced ovarian cancer, Gynecol Oncol. 121 (2011) 444-450.

33. Mathivanan S., Ji H., Simpson.R. J. et al. Exosomes: Extracellular organelles important in intercellular communication. Journal of Proteomics. 73 (2010), 1907-1920.

34. Taylor D. D., Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gyn Oncol. — 2008; 110: 13-21.

35. Aslam M. I., Taylor K., Pringle J. H., Jameson J. S.. MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg. — 2009; 96: 702-10.

36. Slaby O., Svoboda M., Fabian P. et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. — 2007; 72: 397-402.

37. Faber C., Kirchner T., Hlubek F. The impact of microRNAs on colorectal cancer. Virchows Arch. — 2009; 454: 359-67.

38. Tang J. T., Fang J. Y. MicroRNA regulatory network in human colorectal cancer. Mini Rev Med Chem. — 2009; 9: 921-6.

39. Schetter A. J., Harris C. C. Plasma microRNAs: a potential biomarker for colorectal cancer? Gut. — 2009; 58: 1318-9.

40. Biscaglia G., Panza A., Gentile A. M. et al. Role of microRNA in the pathogenesis of colorectal cancer: possible involvement of miRNA-143 and miRNA-21. Abstracts / Digestive and Liver Disease 41S (2009), S1 — S167.

41. Rossi S., Kopetz S., Davuluri R. et al. MicroRNAs, ultraconserved genes and colorectal cancers. Int J Biochem Cell Biol. — 2010 Aug;42 (8):1291-7

42. Schetter A. J., Leung S. Y., Sohn J. J. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Jama. — 2008; 299: 425-36.

43. Nielsen B. S., Jorgensen S., Fog J. et al. MicroRNA-21 is expressed in stroma of colorectal cancers and high levels identified by image analysis predict short disease-free survival in stage II colon cancer patients. EJC supplements 8, no. 5 (2010) 5-81.

44. Slaby O., Hrstka R., Sobkova K. et al. Knockdown of oncogenic microRNA-21 displays cytotoxicity in p53 wild-type colon cancer cells. 07 July 2008 abs. 306, p.78.

45. Slaby O., Svoboda M., Fabian P. et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. — 2007; 72: 397-402.

46. Akao Y., Nakagawa Y., Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. — 2006; 29: 903-6.

47. Xi Y., Shalgi R., Fodstad O., Pilpel Y., Ju J. Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res. — 2006; 12: 2014-24.

48. Nakajima G., Hayashi K., Xi Y. et al. Non-coding MicroRNAs hsa-let-7 g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics. — 2006; 3: 317-24.

49. Svoboda M., Izakovicova Holla L., Sefr R. et al. Micro-RNAs miR125b and miR137 are frequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer. Int J Oncol. — 2008; 33: 541-7.

50. Tazawa H., Tsuchiya N., Izumiya M.,

51. Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. — 2007; 104: 15472-7.

52. Diaz R., Silva J., Garcia J. M. et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer. — 2008;

53. : 794-802.

54. Li X., Zhang Y., Zhang Y. et al. Survival prediction of gastric cancer by a seven- microRNA signature. Gut. — 2010, 59, 579-585.

55. Caramuta S., Egyh zi S., Rodolfo M. et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J. Invest. Dermatol. — 2010, 130, 2062-2070.

56. Rossi S., Shimizu M., Barbarotto E. et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood. — 2010, 116, 945-952

57. Dillhoff M., Liu J., Frankel W., Croce C. et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. — 2008,

58. , 2171-2176.

59. Zhou M., Liu Z., Zhao Y. et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer1 (Bak1) expression. J. Biol. Chem. — 2010, 285, 21496-21507.

60. Giovannetti E., Funel N., Peters G. J. et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. — 2010. 70, 4528-4538.

61. Ali A., Ahmad A., Banerjee S. et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. — 2010, 70, 3606.

62. Yu J., Ohuchida K., Mizumoto K. et al. MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol. Cancer. — 2010, 9, 169.

63. Elm n J., Lindow M., Sch tz S., et al. LNA mediated microRNA silencing in non-human primates. Nature. — 2008; 452: 896-9.

64. Meng F., Henson R., Lang M. et al. Involvement of human microRNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterolgoy. — 2006; 130: 2113.

65. Krutzfeldt J., Rajewsky N., Braich R. et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. — 2005, 438: 685-689.

66. Scott G. K., Goga A., Bhaumik D. et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125 or miR-125b. J Biol Chem. — 2007; 282: 1479.

67. Liu C. G., Calin G. A., Meloon B. et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl.Acad. Sci. U. S.A. — 2004, 101, 9740-9744.

68. Margulies M., Egholm M., Altman W. E. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. — 2005, 437, 376-380.

69. Jung M., Schaefer A., Steiner I. et al. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin. Chem. — 2010, 56, 998-1006.

70. Chan E., Vez Prado D. E. and Weidhaas J. B. Cancer microRNAs: From subtype profiling to predictors of response to therapy. Trends in Molecular Medicine. Volume 17, Issue 5, 235-243, 28 February. — 2011.

71. Xu J. Z. and Wong C. W. Hunting for robust gene signature from cancer profiling data: sources of variability, different interpretations, and recent methodological developments. Cancer Lett. — 2010, 296, 9-16.

72. Peltier H. J. and Latham G. J. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. — 2008, 14, 844-852.

73. Marsit C. J., Eddy K. and Kelsey K. T. MicroRNA responses to cellular stress. Cancer Res. — 2006, 66, 10843-10848.

74. Kulshreshtha R., Ferracin M., Wojcik S. E. et al. A microRNA signature of hypoxia. Mol. Cell. Biol. — 2007, 27, 1859-1867.

75. Yazici H., Terry M. B., Cho Y. H. et al. Investigation of the miR16–1 (C > T) +7 substitutionins even different types of cancer from three ethnic groups. Journal of Oncology. Volume 2009, Article ID 827532, 4 p.


Рецензия

Для цитирования:


Федянин М.Ю., Игнатова Е.О., Тюляндин С.А. РОЛЬ МИКРО-РНК ПРИ СОЛИДНЫХ ОПУХОЛЯХ. Злокачественные опухоли. 2013;(1):3-14. https://doi.org/10.18027/2224-5057-2013-1-3-14

For citation:


Fedyanin M.Yu., Ignatova E.O., Tyulyandin S.A. Role of microRNAs in solid tumors. Malignant tumours. 2013;(1):3-14. (In Russ.) https://doi.org/10.18027/2224-5057-2013-1-3-14

Просмотров: 1180


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2224-5057 (Print)
ISSN 2587-6813 (Online)