Стволовые опухолевые клетки рака толстой кишки

Полный текст:


Аннотация

Ранее механизм канцерогенеза рака толстой кишки представлялся процессом последовательного накопления аберраций в генах APC, TP53, TGF , активации сигнального пути MAPK [1]. Это клинически реализовалось в формировании аденомы с последующей трансформацией в злокачественную опухоль. Однако к настоящему времени показано генетическое разнообразие аденокарцином толстой кишки, каждый подтип которой развивается по своему определенному генетически и/или эпигенетически опосредованному пути канцерогенеза [2]. В последнее десятилетие все чаще появляются работы, посвященные теории стволовых опухолевых клеток – только небольшая фракция опухолевых клеток способна инницировать рост опухоли. Данные клетки способны не только дифференцироваться в более зрелые формы опухолевых клеток, но и поддерживают собственный пул клеток – способность к самообновлению [3]. Кроме этого, данные клетки отличаются большей резистентностью к химиотерапии.

Об авторах

Михаил Юрьевич Федянин
ФГБУ «Российский онкологический научный центр им. Н. Н. Блохина»
Россия

к. м.н., врач-онколог отделения клинической фармакологии и химиотерапии,

г. Москва



Дарья Николаевна Хмелькова
МФТИ
Россия

н. с. лаборатории трансляционных исследований и персонализированной медицины Центра живых систем,

Московская область, г. Долгопрудный



Татьяна Сауловна Серебрийская
МФТИ
Россия

к. б.н., с. н.с. лаборатории трансляционных исследований и персонализированной медицины Центра живых систем,

Московская область, г. Долгопрудный



Татьяна Анатольевна Никольская
МФТИ
Россия

к. б.н., зав. лабораторией трансляционных исследований и персонализированной медицины Центра живых систем,

Московская область, г. Долгопрудный



Сергей Алексеевич Тюляндин
ФГБУ «Российский онкологический научный центр им. Н. Н. Блохина»
Россия

д. м.н., профессор, зав. отделением клинической фармакологии и химиотерапии,

г. Москва



Список литературы

1. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–2460.

2. Dienstmann R, Guinney J, Delorenzi M, et al. Colorectal Cancer Subtyping Consortium (CRCSC) identification of a consensus of molecular subtypes. J Clin Oncol. 20014;32:5s (suppl; abstr 3511).

3. Huang EH, Wicha MS. Colon cancer stem cells: Implications for prevention and therapy. Trends Mol Med. 2008;14:503–509.

4. Hirai K, Kotani T, Aratake Y, et al. Dipeptidyl peptidase IV (DPP IV/CD26) staining predicts distant metastasis of ‘benign’ thyroid tumor. Pathol. Int. 1999;49:264–265.

5. Huntly, BJ, Shigematsu, H, Deguchi, K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 2004;6:587–596.

6. Jamieson, CH, Ailles, LE, Dylla, SJ, et al. Granulocytemacrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 2004;351:657–667.

7. Ricci-Vitiani L, Lombardi, DG, Pilozzi E, et al. Identification and expansion of human coloncancer- initiating cells. Nature. 2007;445:111–115.

8. O’Brien CA, Pollett A, Gallinger S and Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–110.

9. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA. 2007;104:10158–10163.

10. Scoville D, Sato T, He X, et al. Current view: intestinal stem cells and signaling. Gastroenterology. 2008;134:849e64.

11. Kuhnert F, Davis CR, Wang HT, et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci U S A. 2004; 101: 266–71.

12. Fodde R and Brabletz T. Wnt/b-catenin signaling in cancer stemness and malignant behavior. Current Opinion in Cell Biology. 2007, 19:150–158.

13. Yuan Y, Niu CC, Deng G, et al. The Wnt5a/Ror2 noncanonical signaling pathway inhibits canonical Wnt signaling in K562 cells. Int J Mol Med. 2011 Jan;27(1):63–9.

14. Tian X, Liu Z, Niu B, et al. E-Cadherin/ -Catenin Complex and the Epithelial Barrier. Journal of Biomedicine and Biotechnology. 2011; Volume 2011 Article ID567305, 6 pages.

15. Yang M, Zhong WW, Srivastava N, et al. G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the -catenin pathway. Proc Natl Acad Sci US A. 26 Apr 2005;102(17):6027–6032.

16. Evans PM, Chen X, Zhang W and Liu C. KLF4 Interacts with -Catenin/TCF4 and Blocks p300/CBP Recruitment by -Catenin. Mol Cell Biol. Jan 2010; 30(2):372–381.

17. Boman BM, Huang E. Human colon cancer stem cells: A new paradigm in gastrointestinal oncology. J Clin Oncol. 2008;26:2828–2838.

18. Medema JP, Vermeulen L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature. 2011;474:318–326.

19. Vries RG, Huch M, Clevers H. Stem cells and cancer of the stomach and intestine. Mol Oncol. 2010;4:373–384.

20. Papailiou J, Bramis KJ, Gazouli M et al. Stem cells in colon cancer. A new era in cancer theory begins. Int J Colorectal Dis 2011; 26: 1–11.

21. Todaro M, Francipane MG, Medema JP et al. Colon cancer stem cells: Promise of targeted therapy. Gastroenterology. 2010; 138: 2151–2162.

22. Dalerba P, Cho RW, Clarke MF. Cancer stem cells: Models and concepts. Annu Rev Med. 2007; 58: 267–284.

23. Davies EJ, Marsh V, Clarke AR. Origin and maintenance of the intestinal cancer stem cell. Mol Carcinog. 2011; 50: 254–263.

24. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 2009;71:241–260.

25. Fafilek B, Krausova M, Vojtechova M, et al. Troy, a tumor necrosis factor receptor family member, interacts with lgr5 to inhibit wnt signaling in intestinal stem cells. Gastroenterology. 2013;144:381–391.

26. van der Flier LG, Haegebarth A, Stange DE, et al. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology. 2009;137:15–17.

27. Munoz J, Stange DE, Schepers AG, et al. Wnt signaling in adult intestinal stem cells and cancer. Cellular Signalling. 2014;26:570–579 577.

28. van Es JH, Barker N, van Oudenaarden A, et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J. 2012;31:3079–3091.

29. Merlos-Suarez A, Barriga FM, Jung P, et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011;8:511–524.

30. Takeda K, Kinoshita I, Shimizu Y, et al. Expression of LGR5, an intestinal stem cell marker, during each stage of colorectal tumorigenesis. Anticancer Res. 2011;31(1):263–70.

31. Simon E, Petke D, Boger C, et al. The spatial distribution of LGR5+ cells correlates with gastric cancer progression. PLoS One. 2012;7(4): e35486.

32. Lopez-Garcia C, Klein AM, Simons BD et al. Intestinal stem cell replacement follows a pattern of neutral drift. Science. 2010;330: 822–825.

33. Tian H, Biehs B, Warming S et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255–259.

34. Takeda N, Jain R, LeBoeuf MR, et al. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334:1420–1424.

35. Powell AE, Wang Y, Li Y, et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell. 2012;149:146–158.

36. Wong VW, Stange DE, Page ME, et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat. Cell Biol. 2012;14:401–408.

37. Yan KS, Chia LA, Li X, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc. Natl. Acad. Sci. U. S. A. 2012;109:466–471.

38. van der Flier LG, van Gijn ME, Hatzis P et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 2009;136:903–912.

39. Itzkovitz S, Lyubimova A, Blat IC, et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat. Cell Biol. 2012;14: 106–114.

40. Snippert HJ, van Es JH, van den Born M, et al. Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology. 2009;136:2187–2194 (e2181).

41. Zhu L, Gibson P, Currle DS, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009;457:603–607.

42. Potten CS, Booth C, Tudor GL, et al. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation. 2003;71:28–41.

43. van Es JH, Sato T, van de Wetering M, et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 2012;14:1099–1104.

44. Roth S, Franken P, Sacchetti A, et al. Paneth cells in intestinal homeostasis and tissue injury. PLoS One. 2012;7: e38965.

45. Buczacki SJ, Zecchini HI, Nicholson AM, et al. Intestinal labelretaining cells are secretory precursors expressing Lgr5. Nature. 2013;495:65–69.

46. Schepers A, Clevers H. Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb. Perspect. Biol. 2012;4: a007989.

47. Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stemcell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 1998;19:379–383.

48. Fevr T., Robine S., Louvard D., Huelsken J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol. 2007;27:7551–7559.

49. Ireland H, Kemp R, Houghton C, et al. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology. 2004;126:1236–1246.

50. Kim KA, Kakitani M, Zhao J, et al. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science. 2009;309:1256–1259.

51. Koo BK, Spit M, Jordens I, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature. 2012;488:665–669.

52. van deWetering M, Sancho E, Verweij C, et al. The beta-catenin/ TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111:241–250.

53. Muncan V, Sansom OJ, Tertoolen L, et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol. Cell. Biol. 2006;26:8418–8426.

54. Angus-Hill ML, Elbert KM, Hidalgo J, Capecchi MR. T-cell factor 4 functions as a tumor suppressor whose disruption modulates colon cell proliferation and tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 2011;108:4914–4919.

55. van Es JH, Haegebarth A, Kujala P, et al. A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol. Cell. Biol. 2012;32:1918–1927.

56. van der Flier LG, Sabates-Bellver J, Oving I, et al. The Intestinal Wnt/TCF Signature. Gastroenterology. 2007;132:628–632.

57. Bjerknes M, Khandanpour C, Moroy T, et al. Origin of the brush cell lineage in the mouse intestinal epithelium. Dev. Biol. 2012; 362: 194–218.

58. Cho JH, Dimri M, Dimri GP. A positive feedback loop regulates the expression of polycomb group protein BMI1 via WNT signaling pathway. Biol. Chem. 2013; 288: 3406–3418.

59. Hoffmeyer K, Raggioli A, Rudloff S, et al. Wnt/ -catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012; 336: 1549–1554.

60. Zhang Y., Toh L., Lau P., Wang X. Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/ -catenin pathway in human cancer. J. Biol. Chem. 2012; 287: 32494–32511.

61. de Lau W, Barker N, Lowet TY, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature. 2012; 476: 293–297.

62. Glinka A, Dolde C, Kirsch N, et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/ -catenin and Wnt/PCP signalling. EMBO Rep. 2011; 12: 1055–1061.

63. Barker N, Clevers H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology. 2010; 138: 1681–1696.

64. Bakker ER, Raghoebir L, Franken PF, et al. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice. Dev. Biol. 2012; 369: 91–100.

65. Miyoshi H, Ajima R, Luo CT, et al. Wnt5a potentiates TGFsignaling to promote colonic crypt regeneration after tissue injury. Science. 2012; 338: 108–113.

66. Potten CS, Gandara R, Mahida YR, et al. The stem cells of small intestinal crypts: Where are they? Cell Prolif. 2009; 42: 731–750.

67. Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011; 469: 415–418.

68. Kosinski C, Li VS, Chan AS, et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 15418–15423.

69. Farin HF, Van Es JH, Clevers H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology. 2012; 143: 1518–1529 (e1517).

70. Rothenberg ME, Nusse Y, Kalisky T, et al. Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. Gastroenterology. 2012; 142: 1195–1205 (e1196).

71. Krausova M, Korinek V. Signal transduction pathways participating in homeostasis and malignant transformation of the intestinal tissue. Neoplasma. 2012; 59: 708–718.

72. van Dop WA, Uhmann A, Wijgerde M, et al. Depletion of the colonic epithelial precursor cell compartment upon conditional activation of the hedgehog pathway. Gastroenterology. 2009; 136: 2195–2203 (e2191–e2197).

73. He XC, Zhang J, Tong WG, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat. Genet. 2004; 36: 1117–1121.

74. Madison BB, Braunstein K, Kuizon E, et al. Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development. 2005; 132: 279–289.

75. van den Brink GR, Bleuming SA, Hardwick JC, et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat. Genet. 2004; 36: 277–282.

76. Haramis AP, Begthel H, van den Born M, et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science. 2004; 303: 1684–1686.

77. Powell AE, Wang Y, Li Y, et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell. 2012; 149: 146–158.

78. Wong VW, Stange DE, Page ME, et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat. Cell Biol. 2012; 14: 401–408.

79. Batlle E, Henderson JT, Beghtel H, et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 2002; 111: 251–263.

80. Bastide P, Darido C, Pannequin J, et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J. Cell Biol. 2007; 178: 635–648.

81. Mori-Akiyama Y, van den Born M, van Es JH, et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology. 2007; 133: 539–546.

82. Fre S, Hannezo E, Sale S, et al. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PLoS One. 2011; 6: e25785.

83. Pellegrinet L, Rodilla V, Liu Z, et al. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology. 2011; 140: 1230–1240 (e1231–e1237).

84. Riccio O, van Gijn ME, Bezdek AC, et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep. 2008; 9: 377–383.

85. Fujimoto K, Beauchamp RD, Whitehead RH. Identification and isolation of candidate human colonic clonogenic cells based on cell surface integrin expression. Gastroenterology. 2002; 123: 1941–1948.

86. King JB, von Furstenberg RJ, Smith BJ, et al. CD24 can be used to isolate Lgr5+ putative colonic epithelial stem cells in mice. Am J Physiol Gastrointest Liver Physiol. Aug 15, 2012; 303(4): G443–G452.

87. Gracz AD, Ramalingam S, Magness ST. Sox9 expression marks a subset of CD24-expressing small intestine epithelial stem cells that form organoids in vitro. Am J Physiol Gastrointest Liver Physiol. 2010; 298: G590–G600.

88. von Furstenberg RJ, Gulati AS, Baxi A, et al. Sorting mouse jejunal epithelial cells with CD24 yields a population with characteristics of intestinal stem cells. Am J Physiol Gastrointest Liver Physiol. 2011; 300: G409–G417.

89. Wang W, Wang X, Peng L, et al. CD24-dependent MAPK pathway activation is required for colorectal cancer cell proliferation. Cancer Sci. 2010; 101: 112–119.

90. Ramalingam S, Daughtridge GW, Johnston MJ, et al. Distinct levels of Sox9 expression mark colon epithelial stem cells that form colonoids in culture. Am J Physiol Gastrointest Liver Physiol. 2012; 302: G10–G20.

91. May R, Riehl TE, Hunt C, et al. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells. 2008; 26: 630–637.

92. Bhatlekar S, Addya S, Salunek M, et al. Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis. Stem Cells Dev. 15 Jan 2014; 23(2): 167–79.

93. Nagai R, Friedman SL, Kasuga M, editors. The biology of Kr ppel -like factors. Berlin: Springer-Verlag; 2009.

94. McConnell BB, Ghaleb AM, Nandan MO, Yang VW. The diverse functions of Kr ppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays. 2007; 29: 549–57.

95. Bonnet D and Dick JE. Human acute myeloid leukemia is organized as hierarchy that originates from a primitive hemapoetic cell. See comment in PubMed Commons belowNat Med. 1997Jul; 3(7): 730–7.

96. Al-Hajj M, Wicha MS, Benito-Henandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc NAtl Acad Sci USA. 2003; 100, 3983–3988.

97. Li C, Heidt DG, Dalerba P, et al. Identification pancreatic cancer stem cells. Cancer Res. 2007; 67: 1030–1037.

98. O’Brien CA, Pollet A, Gallinger S and Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007; 445, 106–110.

99. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007; 445, 111–115.

100. Barker N, Ridgway RA, van Es JH, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009; 457, 608–611.

101. Zhu L, Gibson P, Currle DS, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009; 457, 603–607.

102. Magee JA, Piskounova E and Morisson SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012; 21, 283–298.

103. Ibrahim EE, Babaei-Jadidi R, Saadeddin A, et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem cells. 2012; 30: 2076–2087.

104. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008; 133, 704–714.

105. Morel AP, Lievre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 2008; 3, e2888.

106. Xie G, Yao Q, Liu Y, et al. IL-6 induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int J Oncol 2012; 40, 1171–1179.

107. Asiedu MK, Ingle JN, Behrens MD, et al. TGFbeta/TNF(alpha)- mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res 2011; 71, 4707–4719.

108. Bhat-Nakshatri P, Appaiah H, Ballas C, et al. SLUG/SNAIL2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 2010; 10, 411.

109. Fang X, Cai Y, Liu J, et al. Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogen 2011; 30, 4707–4720.

110. Yu M, Smolen GA, Zhang J, et al. A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression. Genes Dev 2009; 23, 1737–1742.

111. Hwang WL, Yang MH, Tsai ML, et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology. 2011; 141, 279–91, 291.e1–5.

112. Ye J, Wu D, Shen J, et al. Enrichment of colorectal cancer stem cells through epithelial-mesenchymal transition via CDH1 knockdown. Mol Med Report. 2012; 6, 507–512.

113. Brabletz S and Brabletz T. The ZEB/miR-200 feedback loop – a motor of cellular plasticity in development and cancer? EMBO Rep. 2010; 11, 670–677.

114. Hill L, Browne G and Tulchinsky E. ZEB/miR-200 feedback loop: At the crossroads of signal transduction in cancer. Int J Cancer. 2013; 132(4): 745–54.

115. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003 May 30; 113(5): 643–55.

116. Ibrahim EE, Babaei-Jadidi R, Saadeddin A, et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem cells. 2012; 30: 2076–2087.

117. X Lu, SJ Mazur, T Lin, E Appella and Y Xu. The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. 2014 May 15; 33(20): 2655–64.

118. Bu P, Chen KY, Chen JH, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell. 2013 May 2; 12(5): 602–15.

119. Miyamoto S. & Rosenberg DW. Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci. 2011 Nov; 102(11): 1938–42.

120. O’Brien CA, Kreso A, Ryan P, et al. ID1 and ID3 regulate the selfrenewal capacity of human colon cancer-initiating cells through p21. Cancer Cell. 2012 Jun 12; 21(6): 777–92.

121. G mez-L pez S, Lerner RG & Petritsch C. Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci. 2014 Feb; 71(4): 575–97.

122. Tam WL & Weinberg RA. The epigenetics of epithelialmesenchymal plasticity in cancer.. Nat Med. 2013 Nov; 19(11): 1438–49.

123. Hwang WL, Jiang JK, Yang SH, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014 Mar; 16(3): 268–80.

124. Li Y, McClintick J, Zhong L, et al. Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood. 2005; 105: 635–637.

125. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663–676.

126. Dang DT, Chen X, Feng J, et al. Overexpression of Kruppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity. Oncogene. 2003; 22: 3424–3430.

127. Wei D, Kanai M, Huang S, et al. Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis. 2006; 27: 23–31.

128. Ghaleb AM, McConnell BB, Nandan MO, et al. Haploinsufficiency of Kruppel-like factor 4 promotes adenomatous polyposis coli dependent intestinal tumorigenesis. Cancer Res. 2007; 67: 7147–7154.

129. Zhang W, Chen X, Kato Y, et al. Novel cross talk of Kruppel-like factor 4 and beta-catenin regulates normal intestinal homeostasis and tumor repression. Mol Cell Biol. 2006; 26: 2055–2064.

130. Zhao W, Hisamuddin IM, Nandan MO, et al. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene. 2004; 23: 395–402.

131. Leng Z, Tao K, Xia Q, et al. Kru¨ppel-Like Factor 4 Acts as an Oncogene in Colon Cancer Stem Cell-Enriched Spheroid Cells. PLoS ONE. 2013;8(2): e56082. doi:10.1371/journal.pone.0056082.


Дополнительные файлы

Для цитирования: Федянин М.Ю., Хмелькова Д.Н., Серебрийская Т.С., Никольская Т.А., Тюляндин С.А. Стволовые опухолевые клетки рака толстой кишки. Злокачественные опухоли. 2015;(4s2):71-81.

For citation: ., ., ., ., . . Malignant tumours. 2015;(4s2):71-81. (In Russ.)

Просмотров: 428

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2224-5057 (Print)
ISSN 2587-6813 (Online)