Preview

Злокачественные опухоли

Расширенный поиск

Генетическая гетерогенность меланомы кожи: новые мишени для селективного воздействия

Полный текст:

Аннотация

В последнее время достигнуты значительные успехи в понимании молекулярных механизмов возникновения и развитии меланомы и наметился реальный прогресс в лечении пациентов с метастатической меланомой. Улучшение результатов послеоперационного лечения стало возможно благодаря блокаде основных сигнальных путей, специфичных для меланомы, с использованием молекулярно-нацеленных, таргетных, препаратов, ингибирующих продукты онкогенов.

Об авторе

Наталья Николаевна Мазуренко
ФГБУ «Российский онкологический научный центр им. Н.Н.Блохина»
Россия

д.б.н., профессор, зав. лаборатории онкогеномики,

г. Москва



Список литературы

1. Мазуренко Н. Н. Генетические особенности и маркеры меланомы кожи. Усп. мол. онкологии. 2014; 1(2): 27–36.

2. Мазуренко Н. Н., И. В. Цыганова, А. А. Лушникова и др. Спектр мутаций онкогенов различается в субтипах меланомы кожи. Мол. биол. 2015; 49(6).

3. Beadling C., Jacobson-Dunlop E., Hodi F. S., et al. KIT gene mutations and copy number in melanoma subtypes. Clin. Cancer Res. 2008; 14(21): 6821–6828.

4. Bello D. M., Ariyan C. E., Carvajal R. D. Melanoma mutagenesis and aberrant cell signaling. Cancer Control. 2013; 20(4): 261–281.

5. Carvajal R. D., Sosman J. A., Quevedo J. F., et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. JAMA. 2014. 311(23). 2397–2405.

6. Chakraborty R., Wieland C. N., Comfere N. I. Molecular targeted therapies in metastatic melanoma. Pharmacogen and Pers.Med. 2013; 6: 49–56.

7. Chapman P. B., Hauschild A., Robert C., et al. BRIM-3 Study Group. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011; 364(26): 2507–2516.

8. Curtin J. A., Fridlyand J., Kageshita T., et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 2005; 353: 2135–2147.

9. Dahlman K. B., Xia J., Hutchinson K., et al. BRAF (L597) mutations in melanoma are associated with sensitivity to MEK inhibitors. Cancer Discov. 2012; 2(9): 791–797.

10. Dai J., Kong Y., Si L., et al. Large-scale analysis of PDGFRA mutations in melanomas and evaluation of their sensitivity to tyrosine kinase inhibitors imatinib and crenolanib. Clin. Cancer Res. 2013; 19: 6935–6942.

11. Davies H., Bignell G. R., Cox C., et al. Mutations of the BRAF gene in human cancer. Nature. 2002; 417(6892): 949–954.

12. Davies M. A. The role of the PI3K-AKT pathway in melanoma. Cancer J. 2012; 18:142–147.

13. Dumaz N. Mechanism of RAF isoform switching induced by oncogenic RAS in melanoma. Small GTPases. 2011; 2(5): 289–292.

14. Fecher L. A., Cummings S. D., Keefe M. J., Alani R. M. Towards a molecular classification of melanoma. J. Clin. Oncol. 2007; 25: 1606–1620.

15. Fedorenko I. V., Gibney G. T., Keiran S. M. NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene. 2013; 32: 3009–3018.

16. Flaherty K. T., Infante J. R., Daud A., et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 2012. 367(18). 1694–1703.

17. Gaudi S., Messina J. L. Molecular Bases of Cutaneous and Uveal Melanomas. Pathol. Res. Int. 2011; Article ID159421, 1–8 pages.

18. Glitza IC, Davies MA. Genotyping of cutaneous melanoma. Chin. Clin. Oncol.. 2014p; 3(3): 27.

19. Grimaldi AM, Simeone E, Festino L, et al. Novel mechanisms and therapeutic approaches in melanoma: targeting the MAPK pathway. Discov Med. 2015;19(107):455–61.

20. Hansson J. Familial cutaneous melanoma. Adv. Exp. Med. Biol. 2010; 685: 134–145.

21. Hauschild A., Grob J. J., Demidov L. V., et al. Dabrafenib in BRAFmutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012; 380(9839): 358–365.

22. Hayward N. K. Genetics of melanoma predisposition. Oncogene. 2003; 22(20): 3053–3062.

23. Hodis E., Watson I. R., Kryukov G. V., et al. A landscape of driver mutations in melanoma. Cell. 2012; 150(2): 251–263.

24. Hutchinson K. E., Lipson D., Stephens P. J., et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin. Cancer Res. 2013. 19(24). 6696–6702.

25. Hutchinson K. E. Johnson DB, Johnson AS, et al., ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of drivernegativemelanoma. Oncotarget. 2015; 6(26): 22348–22360.

26. Johannessen CM, Boehm JS, Kim SY, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010; 468(7326): 968–972.

27. Kelleher F. C., McArthur G. A. Targeting NRAS in melanoma. Cancer J. 2012; 18: 132–136.

28. Kirkwood J. M., Long G. V., Trefzer U., et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2012; 13(11): 1087–1095.

29. Larkin J, Del Vecchio M, Ascierto PA, et al. Vemurafenib in patients with BRAF (V600) mutated metastatic melanoma: an open-label, multicentre, safety study Lancet Oncol. 2014; 15(4): 436–44.

30. Larkin J, Ascierto PA, Dreno B., et al. Combined vemurafenib and combimetinib in BRAF –mutated melanoma. N Engl J Med. 2014; 371(20):1867–76.

31. Long G. V., Menzies A. M., Nagrial A. M., et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J. Clin. Oncol. 2011; 29(10):1239–4621.

32. Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014; 371(20):1877–88.

33. МаcKie R.M., Hauschild A., Eggermont A. M. Epidemiology of invasive cutaneous melanoma. Ann. Oncol. 2009; 20, Suppl. 6. 1–7.

34. Patel SP, Kim KB, Papadopoulos NE, et al. A phase II study of gefitinib in patients with metastatic melanoma.Melanoma Res. 2011; 21(4):357–363.

35. Platz A., Egyhazi S., Ringborg U., Hansson J. Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol. 2008; 1(4): 395–405.

36. Pleasance E. D., Cheetham R. K., Stephens P. J., et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010. 463(7278). 191–196.

37. Rajakulendran T., Sahmi M., Lefrançois M., et al. A dimerizationdependent mechanism drives RAF catalytic activation. Nature. 2009; 461(7263): 542–545.

38. Ribas A, Hodi FS, Callahan M, et al. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013; 368(14):1365–1366.

39. Ribas A., Gonzalez R., Pavlick A., et al. Combination of vemurafenib and cobimetinib in patients with advanced BRAF(V600)-mutated melanoma: a phase 1b study. Lancet Oncol 2014; 15(9):954–965.

40. Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015; 372(1): 30–39.

41. Spagnolo F., Ghiorzo P, Orgiano L, et al., BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. Onco Targets Ther. 2015; 8: 157–168.

42. Tschandl P., Berghoff A. S., Preusser M., et al. NRAS and BRAF mutations in melanoma-associated nevi and uninvolved nevi. PLoS One. 2013; 8(7): e69639.

43. Van Allen EM, Wagle N, Sucker A, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014; 4(1): 94–109.

44. Voskoboynik M., Arkenau H. T. Combination Therapies for the Treatment of Advanced Melanoma: A Review of Current Evidence. Biochem. Res. Intern. 2014. Vol. 2014, Article ID307059, 9 pages.

45. Vredeveld L. C., Possik P. A., Smit M. A., et al. Abrogation of BRAF V600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 2012; 6: 1055–1069.

46. Wolchok J. D., Kluger H., Callahan M. K., et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 2013; 369(2): 122–133.

47. Xia J, Jia P., Hutchinson K. E., et al. A meta-analysis of somatic mutations from next generation sequencing of 241 melanomas: a road map for the study of genes with potential clinical relevance. Mol. Cancer Ther. 2014; 13(7): 1918–1928.


Для цитирования:


Мазуренко Н.Н. Генетическая гетерогенность меланомы кожи: новые мишени для селективного воздействия. Злокачественные опухоли. 2015;(4s2):3-8.

For citation:


. . Malignant tumours. 2015;(4s2):3-8. (In Russ.)

Просмотров: 588


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2224-5057 (Print)
ISSN 2587-6813 (Online)