Pathological complete response after neoadjuvant immunochemotherapy in gastric cancer with microsatellite instability without PD-L1 expression (CPS = 0). A case report
https://doi.org/10.18027/2224-5057-2024-022
Abstract
Despite the use of modern treatment methods for gastric cancer (GC), survival rates in locally advanced stages remain unsatisfactory. This necessitates the search for new therapeutic options and potential predictive factors for tailoring treatment approaches. The emergence of new molecular classifications like The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ACRG), leading to the identification of a distinct subset — gastric cancer with high microsatellite instability (MSI-H) caused by mismatch repair deficiency (dMMR), has paved the way for a novel treatment direction: immunotherapy. MSI status and PD-L1 expression are regarded as predictors of immunotherapy efficacy in GC. However, the question of which marker is more accurate or if they should be considered together remains unanswered. Furthermore, the efficacy of checkpoint inhibitor therapy is often attributed to increased PD-L1 expression in microsatellite unstable tumors compared to microsatellite stable ones. The article discusses a case demonstrating the high efficacy of immunochemotherapy, resulting in complete pathomorphological regression of the tumor in a patient with locally advanced gastric cancer and MSI-H status after neoadjuvant immunochemotherapy, despite the absence of PD-L1 expression (CPS-0). The patient has been monitored for 1.5 years post-treatment at the N. N. Blokhin National Medical Research Center of Oncology without signs of progression.
About the Authors
S. N. NeredRussian Federation
Nered Sergei Nikolaevich
23 Kashirskoe Shosse, Moscow 115478; 125993 Москва, ул. Баррикадная, 2 / 1, стр. 1
Competing Interests:
The authors declare that there are no possible conflicts of interest.
R. N. Dzamaliddinova
Russian Federation
Dzhamaliddinova Ravilya Nurislamovna
1 Ostrovityanova St., Moscow 117997
Competing Interests:
The authors declare that there are no possible conflicts of interest.
H. Sun
Russian Federation
Henian Sun
23 Kashirskoe Shosse, Moscow 115478
Competing Interests:
The authors declare that there are no possible conflicts of interest.
А. А. Tryakin
Russian Federation
Tryakin Aleksei Aleksandrovich
23 Kashirskoe Shosse, Moscow 115478
Competing Interests:
The authors declare that there are no possible conflicts of interest.
P. V. Kononets
Russian Federation
Kononets Pavel Vyacheslavovich
23 Kashirskoe Shosse, Moscow 115478
Competing Interests:
The authors declare that there are no possible conflicts of interest.
I. S. Stilidi
Russian Federation
Stilidi Ivan Sokratovich
23 Kashirskoe Shosse, Moscow 115478; 1 Ostrovityanova St., Moscow 117997
Competing Interests:
The authors declare that there are no possible conflicts of interest.
References
1. Sung H., Ferlay J., Siegel R.L., et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–249. https://doi.org/10.3322/caac.21660
2. Malignant tumors in Russia in 2020 (morbidity and mortality). Eds.: А.D. Kaprin, V.V. Starinskiy, A.O. Shachzadova. Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2021.252 p (In Russ.)
3. Al-Batran S.E., Homann N., Pauligk C., et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 2019;393(10184):1948–1957. https://doi.org/10.1016/S0140-6736(18)32557-1
4. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513(7517):202–9. https://doi.org/10.1038/nature13480
5. Cristescu R., Lee J., Nebozhyn M., et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015;21(5):449–456. https://doi.org/10.1038/nm.3850
6. Tran-Minh M.L., Lehmann-Che J., Lambert J., et al. Prevalence and prognosis of microsatellite instability in oesogastric adenocarcinoma, NORDICAP 16–01. Clin Res Hepatol Gastroenterol 2021;45(4):101691. https://doi.org/10.1016/j.clinre.2021.101691
7. Narita Y., Muro K. Updated immunotherapy for gastric cancer. J Clin Med 2023:12(7):2636. https://doi.org/10.3390/jcm12072636
8. Saeterdal I., Bjørheim J., Lislerud K., et al. Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci U S A 2001;98(23):13255–60. https://doi.org/10.1073/pnas.231326898
9. Pietrantonio F., Miceli R., Raimondi A., et al. Individual patient data meta-analysis of the value of microsatellite instability as a biomarker in gastric cancer. J Clin Oncol 2019;37(35):p.3392–3400. https://doi.org/10.1200/JCO.19.01124
10. Derks S., Liao X., Chiaravalli A.M., et al. Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers. Oncotarget 2016;7(22):32925–32. https://doi.org/10.18632/oncotarget.9076
11. Sun H., Nered S., Tryakin A., et al. Microsatellite instability (MSI) in patients with gastric cancer (GC) and correlation with PD-L1 expression. J Clin Oncol 2024;42(3_suppl):389–389. https://doi.org/10.1200/JCO.2024.42.3_suppl.389
12. Sun H., Nered S.N., Tryakin A.A., et al. Neoadjuvant chemoimmunotherapy for gastric cancer patients with microsatellite instability. Voprosy Onkologii 2023;69(2):275–284. https://doi.org/10.37469/0507-3758-2023-69-2-275-284 (In Russ.)
13. Sun H., Nered S.N., Tryakin A.A., et al. The results of treatment for resectable gastric cancer with microsatellite instability. Tazovaya Khirurgiya i Onkologiya = Pelvic Surgery and Oncology 2023;13(2):17–26. https://doi.org/10.17650/2686-9594-2023-13-2-17-26 (In Russ.)
14. Smyth E.C., Wotherspoon A., Peckitt C., et al. Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) Trial. JAMA Oncol 2017;3(9):1197–1203. https://doi.org/10.1001/jamaoncol.2016.6762
15. Hashimoto T., Kurokawa Y., Takahashi T., et al. Predictive value of MLH1 and PD-L1 expression for prognosis and response to preoperative chemotherapy in gastric cancer. Gastric Cancer 2019;22(4):785–792. https://doi.org/10.1007/s10120-018-00918-4
16. Nappo F., Fornaro L., Pompella L., et al. Pattern of recurrence and overall survival in esophagogastric cancer after perioperative FLOT and clinical outcomes in MSI-H population: the PROSECCO Study. J Cancer Res Clin Oncol 2023;149(9):6601–6611. https://doi.org/10.1007/s00432-023-04636-y
17. Choi Y.Y., Kim H., Shin S.J., et al. Microsatellite instability and programmed cell death-ligand 1 expression in stage II/III gastric cancer: post hoc analysis of the CLASSIC randomized controlled study. Ann Surg 2019;270(2):309–316. https://doi.org/10.1097/SLA.0000000000002803
18. Janjigian Y.Y., Shitara K., Moehler M., et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 2021;398(10294):27–40. https://doi.org/10.1016/S0140-6736(21)00797-2
19. Marrelli D., Polom K., Pascale V., et al. Strong Prognostic Value of Microsatellite Instability in Intestinal Type Non-cardia Gastric Cancer. Ann Surg Oncol 2016;23(3):943–50. https://doi.org/10.1245/s10434-015-4931-3
20. Cunningham D., Allum W.H., Stenning S.P., et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006;355(1):11–20. https://doi.org/10.1056/NEJMoa055531
21. Tabernero J., Van Cutsem E., Bang Y.J., et al. Pembrolizumab with or without chemotherapy versus chemotherapy for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: The phase III KEYNOTE-062 study. J Clin Oncol 2019;37(18_suppl):LBA4007-LBA4007. https://doi.org/10.1200/JCO.2019.37.18_suppl.LBA4007
22. Chao J., Fuchs C.S., Shitara K., et al. Assessment of pembrolizumab therapy for the treatment of microsatellite instability-high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol 2021;7(6):895–902. https://doi.org/10.1001/jamaoncol.2021.0275
23. André T., Tougeron D., Piessen G., et al. Neoadjuvant nivolumab plus ipilimumab and adjuvant nivolumab in localized deficient mismatch repair/microsatellite instability-high gastric or esophagogastric junction adenocarcinoma: The GERCOR NEONIPIGA Phase II Study. J Clin Oncol 2023;41(2):255–265. https://doi.org/10.1200/JCO.22.00686
24. Al-Batran S.E., Lorenzen S., Thuss-Patience P.C., et al. A randomized, open-label, phase II/III efficacy and safety study of atezolizumab in combination with FLOT versus FLOT alone in patients with gastric cancer and adenocarcinoma of the oesophagogastric junction and high immune responsiveness: the IKF-S633/DANTE trial, a trial of AIO in collaboration with SAKK. J Clin Oncol 2023;41:TPS4177. https://doi.org/10.1200/JCO.2023.41.16_suppl.TPS4177
Review
For citations:
Nered S.N., Dzamaliddinova R.N., Sun H., Tryakin А.А., Kononets P.V., Stilidi I.S. Pathological complete response after neoadjuvant immunochemotherapy in gastric cancer with microsatellite instability without PD-L1 expression (CPS = 0). A case report. Malignant tumours. 2024;14(4):77-83. (In Russ.) https://doi.org/10.18027/2224-5057-2024-022