Lithium as a coupling factor of mineral and glucose homeostasis disorders in malignant tumors of epithelial tissues
https://doi.org/10.18027/2224-5057-2014-4-10-18
Abstract
The impact of changes in orientation of the metabolism of carbohydrates and minerals in the cell malignancy has been demonstrated in several studies. The aim of this study was to analyze the molecular mechanisms and relationship of carbohydrate and mineral homeostasis with the processes of carcinogenesis. Parameters of carbohydrate and mineral metabolism of blood were defined in 73 patients with malignant tumors of epithelial tissues and 31 healthy subjects. In the presence of malignant tumors of epithelial tissues there was a statistically significant increase in the levels of glucose and glycated hemoglobin in the early stages of the disease and the absence of them at stage IV of the disease. There were no statistically significant differences in the levels of C-peptide and immunoreactive insulin in blood samples of cancer patients, although they tended to increase compared with the control group. Analysis of the composition of macroelements at the early stages of carcinogenesis revealed a statistically significant reduction of sodium level in plasma which wasn’t observed at the terminal stage of the disease. The concentrations of potassium and chlorine tend to increase in cancer patients, but the differences between these parameters were not statistically significant. Concentrations of calcium and magnesium significantly increased in the presence of malignant tumors. Analysis of microelements in the blood plasma showed a decrease in the concentration of cuprum and lithium (in 2.5-5 times) and the growth of strontium concentrations. Lithium has multiple effects on the life of cells, affecting a number of elements of messengers, as well as being the link between the carbohydrate metabolism and cell malignancy. Disorders of mineral homeostasis are important element in the disintegration of the metabolic processes in carcinogenesis
About the Authors
E. I. ErlykinaRussian Federation
L. M. Obukhova
Russian Federation
A. V. Alyasova
Russian Federation
T. N. Gorshkova
Russian Federation
V. P. Frantsuzeva
Russian Federation
References
1. Hei T. K., Sudilovsky O. Effects of a high-sucrose diet on the development of enzyme-altered foci in chemical hepatocarcinogenesis in rats. — Cancer Res.,1985; 45 (6): 2700–2705.
2. Антонов В. Г., Козлов В. К. Патогенез онкологических заболеваний: иммунные и биохимические феномены и механизмы. Внеклеточные и клеточные механизмы общей иммунодепрессии и иммунной резистентности.— Цитокины и воспаление., 2004:. 3 (1): 8–19.
3. Khuri F. R. Lung cancer chemoprevention. — Semin. Surg. Oncol., 2000; 18 (2): 100–105.
4. Gresner P., Gromadzinska J., Jablonska E., Kaczmarski J., Wasowicz W. Expression of selenoprotein-coding genes SEPP1, SEP15 and hGPX1 in non-small cell lung cancer. — Lung Cancer., 2009; 65 (1): 34–40.
5. Snow E. T. Metal carcinogenesis: mechanistic implications.— Pharmacol Ther., 1992; 53 (1): 31–65.
6. Valko M., Rhodes C. J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. — Chem. Biol. Interact., 2006; 160 (1): 1–40.
7. Watcharasit P., Bijur G. N., Zmijewski J. W., Song L., Zmijewska A., Chen X., Johnson G. V., Jope R. S. Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. — Proc. Natl. Acad. Sci. U S A, 2002. — 99 (12): 7951–7955.
8. Gehring L., Leonhardt P., Bigl H., Loser T. Serum trace elements in lung cancer–. Metal ions in Biology and Medicine, 1998; 5: 583–587.
9. Tran A., Pio B. S., Khatibi B., Czernin J., Phelps M. E., Silverman D. H. 18F-FDG PET for staging breast cancer in patients with inner-quadrant versus outer-quadrant tumors: comparison with long-term clinical outcome.— J Nucl Med, 2005; 46: 1455–1459.
10. Sutter C. H., Laughner E., Semenza G. L. Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations.— Proc Natl Acad Sci USA. 2000; 97:4748–4753.
11. Iyer N. V., Kotch L. E., Agani F., Leung S. W., Laughner E., Wenger R. H., Gassmann M., Gearhart J. D., Lawler A. M., Yu A. Y., Semenza G. L. Cellular and developmental control of O2 of hypoxia-inducible factor 1 alpha. — Genes Dev., 1998; 12:149–162.
12. Young C. D., Lewis A. S., Rudolph M. C. et al. Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. — PLoS One., 2011; 6 (8): e23205.
13. Fan Y., Zong W. — X.. Hacking hexokinase halts tumor growth. — Cancer Biol Ther., 2008; 7 (7): 1136–1138.
14. Ferreira L. M. Cancer metabolism: The Warburg effect today. — Exp Mol Pathol., 2010; 89 (3): 372–380.
15. Semenza G. L., Roth P. H., Fang H. — M., Wang G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. — J Biol Chem., 1994; 269: 23757.
16. Semenza G. L., Jiang B. — H., Leung S. W., Passantino R., Concordet J. — P., Maire P., Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. — J Biol Chem., 1996; 271: 32529–32537.
17. Zhang S., Yang J. — H., Guo C. — K., Cai P. — C. Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. — Cancer Lett., 2007; 253: 108–114.
18. Vizan P., Alcarraz-Vizan G., Diaz-Moralli S. Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29. — Int J Cancer., 2009; 124 (12): 2789–2796.
19. Sanchez-Perez Y., Carrasco-Legleu C., Garcia-Cuellar C, et al. Oxidative stress in carcinogenesis. Correlation between lipid peroxidation and induction of preneoplastic lesions in rat hepatocarcinogenesis. — Cancer Lett., 2005: 217: 25–32.
20. Karlović D., Buljan D.. Apoptosis — the potential pathophysiological mechanism in mood disorders modifiable by lithium salts. — Biochemia Medica, 2008; 18 (3): 291–310.
21. Williams R. S.B., Harwood A. J. Lithium therapy and signal transduction. — Trends in Pharmacological Sciences, 2000; 21 (2): 61–64.
22. Gould T. D., Chen G., Manji H. K. Mood stabilizer psychopharmacology. — Clin Neurosci Res, 2002; 2: 193–212.
23. Suganthi M., Sangeetha G., Gayathri G., Ravi Sankar B. Biphasic dose-dependent effect of lithium chloride on survival of human hormone-dependent breast cancer cells (MCF-7). — Biological Trace Element Research,
24. ; 150 (1–3): 477–486.
25. Wu X., Lippman S. M. An intermittent approach for cancer chemoprevention. — Nature Reviews Cancer, 2011; 11 (12): 879–885.
26. Salvesen G. S., Dixit V. M. Caspase activation: the induced-proximity model. — Proc Natl Acad Sci USA, 1999; 96 (20): 10964–10967.
27. Hirata, H., Takahashi, A., Kobayashi, S., Yonehara, S., Sawai, H., Okazaki, T., Yamamoto, K., Sasada, M. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. — J. Exp. J. Exp. Med., 1998; 187:587–600.
28. Skulachev V. P. Mitochondria in the programmed death phenomena; a principle of biology: «It is better to die than to be wrong». — IUBMB Life, 2000; 49: 365–373.
29. Kamata H., Hirata H. Redox regulation of cellular signaling. Cell Signal, 1999; 11: 1–14.
30. Lan Y., Liu X., Zhang R., Wang K., Wang Y., Hua Z. — C. Lithium enhances TRAIL-induced apoptosis in human lung carcinoma A549 cells. — Biometals, 2013; 26 (2): 241–254.
31. Fontela T, Garcia Hermida O, G mez-Acebo J. Dihydroergotamine, but not naloxone, counteracts lithium as an inhibitor of glucose-induced insulin release in isolated rat islets in vitro. — Diabetologia, 1987; 30 (3): 183–187.
Review
For citations:
Erlykina E.I., Obukhova L.M., Alyasova A.V., Gorshkova T.N., Frantsuzeva V.P. Lithium as a coupling factor of mineral and glucose homeostasis disorders in malignant tumors of epithelial tissues. Malignant tumours. 2014;(4):10-18. (In Russ.) https://doi.org/10.18027/2224-5057-2014-4-10-18