MAIN MOLECULAR MECHANISMS OF CARCINOGENESIS INDUCED BY HUMAN PAPILLOMAVIRUS
https://doi.org/10.18027/2224-5057-2021-11-4-39-47
Abstract
The most widespread infectious factors causing malignant neoplasms are human papillomaviruses (HPV). HPV geno‑ type 16 is often involved in the carcinogenesis of oropharyngeal squamous cell carcinoma, which occurs in 80 % of cases. The viral proteins E5, E6, and E7 are the main drivers responsible for the initiation and progression of cancer through the stimulation of cell proliferation, cell survival, inhibition of cell apoptosis and modulation of keratinocyte differentiation. The early promoter is initiated upstream of E6 independently of cell differentiation and synthesizes transcripts that are translated early in the viral life cycle. The launch of the late promoter depends on cell differentiation and activated for production transcripts that induce translation of the L1 and L2 proteins. During the entry of the virus into the cell, the L1 protein attaches to heparan sulfate proteoglycans (HSPG) on the extracellular matrix, after which the virus enters the cell by micropinocytosis. The interaction with HSPG is considered the initial contact that promotes conformational changes in the capsid, allowing the transfer of the virion to the secondary entry receptor. Cell division plays an important role in the delivery of the viral genome to the nucleus. HPV moves through the cytoplasm in the lumen of transport vesicles, which originate from the Golgi complex, line up along microtubules and are transmitted to condensed chromosomes. It is believed that the integration of the HPV genome increases the expression of HPV oncogenes in the cell, which contributes to uncontrolled cell proliferation and significant DNA damage. Integrated transcripts may be more stable and oncogenic than episomal-derived HPV transcripts.
About the Authors
D. S. PolatovaUzbekistan
Dzhamila Sh. Polatova, MD, PhD, DSc, Scientific Director of the Department of Tumors of the Musculoskeletal System, Republican specialized Scientific and practical Medical Center of Oncology and Radiology; General Secretary of the Association of Oncologists of Uzbekistan; Head of the Department of Oncology and Medical Radiology, Tashkent state dental institute
Tashkent
A. Y. Madaminov
Uzbekistan
Akhmad Yu. Madaminov, Resident of the Department of Head and Neck Tumors, Republican specialized Scientific and practical Medical Center of Oncology and Radiology; Scientific Applicant of the Department of Oncology and Medical Radiology, Tashkent state dental institute
Tashkent
References
1. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965 Mar;37:614-36. doi:10.1016/00144827(65)90211-9. PMID:14315085.
2. Оловников А.М. Принцип маргинотомии в темплатном синтезе полинуклеотидов. Доклады Академии наук СССР. 1971;201(6):1496-9. PMID:5158754.
3. R. Sanjuán, M. Pereira-Gómez, J. Risso, Chapter 3 - Genome Instability in DNA Viruses, Genome Stability, From Virus to Human Application, Academic Press, 2016, Pages 37-47, ISBN 9780128033098, https://doi.org/10.1016/B9780-12-803309-8.00003-3.
4. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020 Feb;8(2):e180-e190. doi:10.1016/S2214-109X(19)30488-7.
5. Castellsagué X, Alemany L, Quer M, Halec G, Quirós B, Tous S, Clavero O, Alòs L, Biegner T, Szafarowski T, Alejo M, Holzinger D, Cadena E, Claros E, Hall G, Laco J, Poljak M, Benevolo M, Kasamatsu E, Mehanna H, Ndiaye C, Guimerà N, Lloveras B, León X, Ruiz-Cabezas JC, Alvarado-Cabrero I, Kang CS, Oh JK, Garcia-Rojo M, Iljazovic E, Ajayi OF, Duarte F, Nessa A, Tinoco L, Duran-Padilla MA, Pirog EC, Viarheichyk H, Morales H, Costes V, Félix A, Germar MJ, Mena M, Ruacan A, Jain A, Mehrotra R, Goodman MT, Lombardi LE, Ferrera A, Malami S, Albanesi EI, Dabed P, Molina C, López-Revilla R, Mandys V, González ME, Velasco J, Bravo IG, Quint W, Pawlita M, Muñoz N, de Sanjosé S, Xavier Bosch F; ICO International HPV in Head and Neck Cancer Study Group. HPV Involvement in Head and Neck Cancers: Comprehensive Assessment of Biomarkers in 3680 Patients. J Natl Cancer Inst. 2016 Jan 28;108(6):djv403. doi:10.1093/jnci/djv403. PMID:26823521.
6. International Human Papillomavirus (HPV) Reference Center [Internet]. Available from: https://www.hpvcenter.se/human_reference_clones.
7. DiGiuseppe S, Luszczek W, Keiffer TR, Bienkowska-Haba M, Guion LG, Sapp MJ. Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis. Proc Natl Acad Sci U S A. 2016; 113(22):6289–6294.
8. Buck CB, Cheng N, Thompson CD, Lowy DR, Steven AC, Schiller JT, Trus BL. Arrangement of L2 within the papillomavirus capsid. J Virol. 2008; 82(11):5190–5197. [PubMed: 18367526].
9. Wolf M, Garcea RL, Grigorieff N, Harrison SC. Subunit interactions in bovine papillomavirus. Proc Natl Acad Sci USA. 2010; 107(14):6298–6303. [PubMed: 20308582].
10. Richards RM, Lowy DR, Schiller JT, Day PM. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc. Natl. Acad. Sci. U S A. 2006; 103(5): 1522–1527. [PubMed: 16432208].
11. Harden ME, Munger K. Human papillomavirus molecular biology. Mutat Res Rev Mutat Res. 2017 Apr-Jun;772:3-12. doi:10.1016/j.mrrev.2016.07.002. Epub 2016 Jul 5. PMID:28528688; PMCID: PMC5500221.
12. Cosper PF, Bradley S, Luo L, Kimple RJ. Biology of HPV Mediated Carcinogenesis and Tumor Progression. Semin Radiat Oncol. 2021 Oct;31(4):265-273. doi:10.1016/j.semradonc.2021.02.006. PMID:34455982; PMCID: PMC8409095.
13. Maglennon GA, McIntosh P, Doorbar J: Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology 414:153-163, 2011. Jun 5.
14. Reinson T, Henno L, Toots M, Ustav M Jr, Ustav M. The Cell Cycle Timing of Human Papillomavirus DNA Replication. PLoS One. 2015 Jul 1;10(7):e0131675. doi:10.1371/journal.pone.0131675. PMID:26132923; PMCID: PMC4489393.
15. Sekhar V, Reed SC, McBride AA: Interaction of the Betapapillomavirus E2 tethering protein with mitotic chromosomes. JVI 84:543-557, 2010. Jan 1.
16. Schiffman M, Doorbar J, Wentzensen N, de Sanjosé S, Fakhry C, Monk BJ, Stanley MA, Franceschi S. Carcinogenic human papillomavirus infection. Nat Rev Dis Primers. 2016 Dec 1;2:16086. doi:10.1038/nrdp.2016.86. PMID:27905473.
17. Conway MJ, Meyers C. Replication and assembly of human papillomaviruses. J Dent Res. 2009;88(4):307-317. doi:10.1177/0022034509333446.
18. García-Vallvé S, Iglesias-Rozas JR, Alonso A, Bravo IG. Different papillomaviruses have different repertoires of transcription factor binding sites: convergence and divergence in the upstream regulatory region. BMC Evol Biol. 2006; 6:20, http://dx.doi.org/10.1186/1471-2148-6-20.
19. Ribeiro, A. L., Caodaglio, A. S., & Sichero, L. (2018). Regulation of HPV transcription. Clinics (Sao Paulo, Brazil), 73(suppl 1), e486s. https://doi.org/10.6061/clinics/2018/e486s.
20. Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology. 2013;445(1-2):115-137. doi:10.1016/j.virol.2013.04.026.
21. Kono T, Laimins L. Genomic Instability and DNA Damage Repair Pathways Induced by Human Papillomaviruses. Viruses. 2021 Sep 14;13(9):1821. doi:10.3390/v13091821. PMID:34578402; PMCID: PMC8472259.
22. Gupta S, Kumar P, Das BC. HPV: Molecular pathways and targets. Curr Probl Cancer. 2018 Mar-Apr;42(2):161-174. doi:10.1016/j.currproblcancer.2018.03.003. Epub 2018 Apr 5. PMID:29706467.
23. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2014 Dec;15(12):771-85. doi:10.1038/nrm3902. Epub 2014 Nov 5. PMID:25370693; PMCID: PMC4682873.
24. Esko JD, Lindahl U. Molecular diversity of heparan sulfate. J Clin Invest. 2001 Jul;108(2):169-73. doi:10.1172/JCI13530. PMID:11457867; PMCID: PMC203033.
25. DiGiuseppe S., Bienkowska-Haba M., Guion L.G., Sapp M. Cruising the cellular highways: how human papillomavirus travels from the surface to the nucleus. Virus Res. 2017 March 02; 231: 1–9. doi:10.1016/j.virusres.2016.10.015.
26. Richards KF, Bienkowska-Haba M, Dasgupta J, Chen XS, Sapp M. Multiple heparan sulfate binding site engagements are required for the infectious entry of human papillomavirus type 16. J Virol. 2013 Nov;87(21):11426-37. doi:10.1128/JVI.01721-13. Epub 2013 Aug 21. PMID:23966387; PMCID: PMC3807331.
27. Scheffer KD, Berditchevski F, Florin L. The tetraspanin CD151 in papillomavirus infection. Viruses. 2014 Feb 18;6(2):893908. doi:10.3390/v6020893. PMID:24553111; PMCID: PMC3939487.
28. Sapp M, Bienkowska-Haba M. Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J. 2009 Dec;276(24):7206-16. doi:10.1111/j.1742-4658.2009.07400.x. PMID:19878308; PMCID: PMC2795018.
29. Raff AB, Woodham AW, Raff LM, Skeate JG, Yan L, Da Silva DM, Schelhaas M, Kast WM. The evolving field of human papillomavirus receptor research: a review of binding and entry. J Virol. 2013 Jun;87(11):6062-72. doi:10.1128/JVI.00330-13. Epub 2013 Mar 27. PMID:23536685; PMCID: PMC3648114.
30. Ozbun MA. Extracellular events impacting human papillomavirus infections: Epithelial wounding to cell signaling involved in virus entry. Papillomavirus Res. 2019 Jun;7:188-192. doi:10.1016/j.pvr.2019.04.009. Epub 2019 Apr 11. PMID:30981651; PMCID: PMC6514438.
31. Spoden G, Kühling L, Cordes N, Frenzel B, Sapp M, Boller K, Florin L, Schelhaas M. Human papillomavirus types 16, 18, and 31 share similar endocytic requirements for entry. J Virol. 2013 Jul;87(13):7765-73. doi:10.1128/JVI.00370-13. Epub 2013 Apr 24. PMID:23616662; PMCID: PMC3700296.
32. Bienkowska-Haba M, Williams C, Kim SM, Garcea RL, Sapp M. Cyclophilins facilitate dissociation of the human papillomavirus type 16 capsid protein L1 from the L2/DNA complex following virus entry. J Virol. 2012 Sep;86(18):9875-87. doi:10.1128/JVI.00980-12. Epub 2012 Jul 3. PMID:22761365; PMCID: PMC3446629.
33. Day PM, Thompson CD, Schowalter RM, Lowy DR, Schiller JT. Identification of a role for the trans-Golgi network in human papillomavirus 16 pseudovirus infection. J Virol. 2013 Apr;87(7):3862-70. doi:10.1128/JVI.03222-12. Epub 2013 Jan 23. PMID:23345514; PMCID: PMC3624235.
34. Aydin I, Weber S, Snijder B, Samperio Ventayol P, Kuhbacher A, Becker M, Day PM, Schiller JT, Kann M, Pelkmans L, Helenius A, Schelhaas M. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses. PLoS Pathog. 2014; 10(5):e1004162.
35. Jongsma ML, Berlin I, Neefjes J. On the move: organelle dynamics during mitosis. Trends Cell Biol. 2015 Mar;25(3):11224. doi:10.1016/j.tcb.2014.10.005. Epub 2014 Nov 18. PMID:25466831.
36. Graham SV, Faizo AAA. Control of human papillomavirus gene expression by alternative splicing. Virus Res. 2017 Mar 2;231:83-95. doi:10.1016/j.virusres.2016.11.016. Epub 2016 Nov 17. PMID:27867028; PMCID: PMC5335905.
37. Sano D, Oridate N. The molecular mechanism of human papillomavirus-induced carcinogenesis in head and neck squamous cell carcinoma. Int J Clin Oncol. 2016 Oct;21(5):819-826. doi:10.1007/s10147-016-1005-x. Epub 2016 Jun 23. PMID:27339270.
38. Wentzensen N, Vinokurova S, von Knebel Doeberitz M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res. 2004 Jun 1;64(11):3878-84. doi:10.1158/0008-5472.CAN-04-0009. PMID:15172997.
39. Akagi K, Li J, Broutian TR, Padilla-Nash H, Xiao W, Jiang B, Rocco JW, Teknos TN, Kumar B, Wangsa D, He D, Ried T, Symer DE, Gillison ML. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res. 2014 Feb;24(2):185-99. doi:10.1101/gr.164806.113. Epub 2013 Nov 7. PMID:24201445; PMCID: PMC3912410.
40. Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, Ding W, Yu L, Wang X, Wang L, Shen H, Zhang C, Liu H, Liu X, Zhao Y, Fang X, Li S, Chen W, Tang T, Fu A, Wang Z, Chen G, Gao Q, Li S, Xi L, Wang C, Liao S, Ma X, Wu P, Li K, Wang S, Zhou J, Wang J, Xu X, Wang H, Ma D. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015 Feb;47(2):158-63. doi:10.1038/ng.3178. Epub 2015 Jan 12. PMID:25581428.
41. McBride AA, Warburton A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 2017 Apr 6;13(4):e1006211. doi:10.1371/journal.ppat.1006211. PMID:28384274; PMCID: PMC5383336.
42. Стукань А.И., Чухрай О.Ю., Порханов В.А., Мурашко Р.А., Бодня В.H., Макарова Ю.М. Орофарингеальная карцинома, ассоциированная с вирусом папилломы человека: тенденции эпидемиологии и методы выявления вируса в опухоли. Опухоли головы и шеи. 2018;8(3):77-83. https://doi.org/10.17650/2222-1468-2018-8-3-77-83.
43. Walline HM, Goudsmit CM, McHugh JB, Tang AL, Owen JH, Teh BT, McKean E, Glover TW, Graham MP, Prince ME, Chepeha DB, Chinn SB, Ferris RL, Gollin SM, Hoffmann TK, Bier H, Brakenhoff R, Bradford CR, Carey TE; University of Michigan Head and Neck Specialized Program of Research Excellence (SPORE) Program. Integration of high-risk human papillomavirus into cellular cancer-related genes in head and neck cancer cell lines. Head Neck. 2017 May;39(5):840-852. doi:10.1002/hed.24729. Epub 2017 Feb 25. PMID:28236344; PMCID: PMC5392184.
Review
For citations:
Polatova D.S., Madaminov A.Y. MAIN MOLECULAR MECHANISMS OF CARCINOGENESIS INDUCED BY HUMAN PAPILLOMAVIRUS. Malignant tumours. 2021;11(4):39-47. (In Russ.) https://doi.org/10.18027/2224-5057-2021-11-4-39-47