Computed tomographic pneumogastrography in determining the types of gastric cancer according to the Lauren classification
https://doi.org/10.18027/2224-5057-2021-11-2-13-26
Abstract
Objective. To assess the capabilities of computed tomographic pneumogastrography in determining the types of gastric cancer according to the Lauren classification at the stage of clinical staging.
Materials and methods. This study is a single-center retrospective study with 202 patients with gastric cancer included who was treated at the National Medical Research Center of Oncology named after N. N. Petrov from 2015 to 2018. All patients underwent subtotal gastric resection or gastrectomy and computed tomographic pneumogastrography at the stage of clinical staging. For patients undergoing neoadjuvant chemotherapy, CT was performed twice: before chemotherapy and after, immediately before surgery. We studied quantitative and qualitative imaging biomarkers, measured densitometric indices of stomach tumor density in the arterial, portal and delayed phases of scanning at five different points. For patients receiving NACT, all density indices were recorded twice — both before the start of therapeutic treatment, and after, immediately before the surgery.
Results. The distribution of gastric cancer types according to Lauren»s classification was as follows: in 59 (29,2 %) intestinal type, 69 (34,2 %) — diffuse, 16 (7,9 %) — mixed, 58 (28,7 %) — indeterminate type. Based on visual characteristics, taking into account the characteristics of tumor growth, 3 main CT-PGG of the gastric cancer type were identified: 1 — tuberous (n = 68, 34,0 %), 2 — intramural (n = 57,3 %) and 3 — mixed (n = 77,4 %). CT-PGG tumor type is associated with Lauren type (χ2 = 185,19, p <0,001). With a tuberous CT-PGG type, it is possible to assume that the tumor is of an intestinal or indeterminate Lauren type; sensitivity 0,58 (95% CI: 0,49-0,67), specificity 0,1 (95% CI: 0,96-0,1). With an intramural CT-PGG type, the diffuse type of tumor according to Lauren is most likely; sensitivity 0,75 (95% CI: 0,64-0,85), specificity 0,96 (95% CI: 0,91-0,99). With a mixed CT-PGG type, the definition of the type according to Lauren is difficult. In the definition of mixed tumor type according to Lauren, the sensitivity and specificity of mixed CT-PGG tumor type are 0,94 (95% CI: 0,70% -0,1) and 0,67 (95% CI: 0,59-0,73) respectively.
Conclusion. The shape of the stomach tumor, determined by CT-PGG, has a high diagnostic efficiency in determining the types of gastric cancer according to Lauren. The tuberous CT-PGG type is typical for tumors of the intestinal type according to Lauren, and the intramural CT-PGG type is typical for tumors of the diffuse type according to Lauren. Tumors of indeterminate Lauren type have any CT-PGG type and contrast pattern. For tumors of a mixed type according to Lauren, a mixed type according to CT-PGG is characteristic, but differential diagnosis with tumors of a tuberous and diffuse type according to Lauren of an atypical form for them is impossible. Tumors of the intestinal and diffuse Lauren type of the CT-PGG type, which is not typical for them, have an atypical contrast pattern.
About the Authors
A. D. AmelinaRussian Federation
Inna D. Amelina - MD, radiologist, Researcher of the Scientific Department of Diagnostic and Interventional Radiology, National Medical Research Center of Oncology named after N.N. Petrov.
Saint Petersburg.
Competing Interests:
No
D. V. Nesterov
Russian Federation
Denis V. Nesterov - MD, PhD, Researcher, Radiologist, National Medical Research Center of Oncology named after N.N. Petrov.
Saint Petersburg.
Competing Interests:
No
L. N. Shevkunov
Russian Federation
Lev N. Shevkunov - MD, PhD, Radiologist, Head of Radiation Diagnostics Department, Senior Research Fellow, Department of Diagnostic and Intervention Radiology, National Medical Research Center of Oncology named after N.N. Petrov.
Saint Petersburg.
Competing Interests:
No
A. M. Karachun
Russian Federation
Aleksey M. Karachun - MD, PhD, DSc, Head of the Department of Abdominal Oncology, Head of the Scientific Department of the Tumors of the Gastrointestinal Tract, Assistant Professor, Oncologist, National Medical Research Center of Oncology named after N.N. Petrov.
Saint Petersburg.
Competing Interests:
No
A. S. Artemyeva
Russian Federation
Anna S. Artemyeva - MD, PhD, Assistant Professor, Head of the Pathological Department, Head of the Scientific Laboratory of Tumor Morphology, National Medical Research Center of Oncology named after N.N. Petrov.
Saint Petersburg.
Competing Interests:
No
S. S. Bagnenko
Russian Federation
Sergei S. Bagnenko - MD, PhD, DSc, Assistant Professor, Head of the Scientific Department of Diagnostic and Interventional Radiology, National Medical Research Center of Oncology named after N.N. Petrov.
Saint Petersburg.
Competing Interests:
No
S. L. Trofimov
Russian Federation
Stanislav L. Trofimov - MD, Radiologist, National Medical Research Center of Oncology named after N.N. Petrov.
Saint Petersburg.
Competing Interests:
No
References
1. Sung H., Ferlay J., Siege R. L., Laversanne M., Soerjomataram I., Jemal A. et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries // CA: a cancer journal for clinicians. 2021. № 71 (3). P. 209-249. DOI: 10.3322/caac.21660.
2. Cislo M., Filip A.A., Offerhaus G.J. A., Cisel B., Rawicz-Pruszynski K., Skierucha M. et al. Distinct molecular subtypes of gastric cancer: from Lauren to molecular pathology // Oncotarget. 2018. Vol. 9. № 27. P. 19427-19442. DOI: 10.18632/oncotarget.24827.
3. Fonseca P. J., Carmona-Bayonas A., Hernandez R. et al. Lauren subtypes of advanced gastric cancer influence survival and response to chemotherapy: real-world data from the AGAMENON National Cancer Registry // British journal of cancer. 2017. Vol. 117. P. 775-782. DOI: 10.1038/bjc.2017.245.
4. Stepanov I.V., Zavyalova M.V., Grigorieva E. S., Bukurova Yu.A., Afanasyev S. G., Cherdyntseva N.V. Clinical-morphological and molecular-genetic features of intestinal and diffuse types of gastric carcinomas // Siberian Journal of Oncology. 2010. № 4 (40). C. 55-66.
5. Jianhui C., Ertao Z., Jianjun P., Zulekha Mungloo P., Jianbo X., Hui W. et al. Borrmann type IV is an independent poor prognostic factor in young gastric cancer patients // Ann Hematol Oncol. 2019. № 6 (10). P. 1274.
6. Kayacetin S. Approach to gastric cancers // Journal of gastric disorders and therapy. 2016. № 2 (2). DOI: 10.16966/23818689.119.
7. Amelina I. D., Mishchenko A. V. Method of computed tomographic examination of the stomach. The patent of the Russian Federation No 2621952. 08.06.2017 (in Russian).
8. Breiman, L. Random Forests. Machine Learning. 2001; 45: 5-32. DOI: 10.1023/A:1010933404324.
9. Kuhn M., Wing J., Weston S., Williams A., Keefer C., Engelhardt A., Cooper T., Mayer Z., Kenkel B., Team R.C., Benesty M., Lescarbeau R., Ziem A., Scrucca L., Tang Y., Candan C. Caret: Classification and Regression Training [Internet]. R package version; 2021 may 15. [cited 2021 March 14]. URL: https://CRAN.R-project.org/package=caret.
10. Robin X., Turck N., Hainard A., Tiberti N., Lisacek F., Sanchez J., Muller M. pROC: an open-source package for R and S + to analyze and compare ROC curves [Internet]. BMC Bioinformatics, 12, 77. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [cited 2021 March 14]. URL: https://www.R-project.org/.
11. Wickham H. GGPLOT2: Elegant Graphics for Data Analysis [Internet]. Springer-Verlag. New York, 2016. ISBN 978-3-319-24277-4. URL: https://ggplot2.tidyvers.
12. Hothorn T., Hornik K., Zeileis A. Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Computational and Graphical Statistics. 2006; 15 (3): 651-674.
13. Wickham H., Francois R., Henry L., Muller K. DPLYR: A Grammar of Data Manipulation [Internet]. Rpackage version 0.8.5. New York, 2020. URL: https://CRAN.R-project.org/package=dplyr.
14. Wickham H., Henry L. TIDYR: Tidy Messy Data [Electronic resource]. R package version 1.0.2. New York, 2020. URL: https://CRAN.R-project.org/package=tidyr (date of request: 12.09.2021).
15. Noh C.-K., Jung M.W., Shin S.J., Lee K. M., Yoo B.M., Lee K. Analysis of endoscopic features for histologic discrepancies between biopsy and endoscopic submucosal dissection in gastric neoplasms: 10-year results // Digestive endoscopy. 2019. Vol. 51, Is. 1. P79-85. DOI: 10.1016/j.dld.2018.08.027.
16. Lorant K., Roland K., Bianca O., Sorin Z. Histopathological lauren classification of gastric carcinoma with biopsy specimen and a histological difference with dysplasia // Clinical and medical investigations. 2018. Vol. 4 (1). P. 1-4. DOI: 10.15761/CMI.1000174.
17. Soh J. S., Lim H., Kang H. S., Kim J. H., Kim K. C. Does the discrepancy in histologic differentiation between a forceps biopsy and an endoscopic specimen necessitate additional surgery in early gastric cancer? // World journal of gastrointestinal oncology. 2017. Vol. 9 (8). P. 319-326. DOI: 10.4251/wjgo.v9.i8.319.
18. Komatsu S., Ichikawa D., Miyamae M., Kosuga T., Konishi H., Shiozaki A. et al. Discrepancies in the histologic type between biopsy and resected specimens: A cautionary note for mixed-type gastric carcinoma // World journal of gastroenterology. 2015. Vol. 21 (15). P. 4673-4679. DOI: 10.3748/wjg.v21.i15.4673.
19. Takao M., Kakushima N., Takizawa K., Tanaka M., Yamaguchi Y., Matsubayashi H. et al. Discrepancies in histologic diagnoses of early gastric cancer between biopsy and endoscopic mucosal resection specimens // Gastric cancer: official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association. 2012. Vol. 15 (1). P. 91-96. DOI: 10.1007/s10120-011-0075-8.
20. Kwon K.-J., Shim K.-N., Song E.-M., Choi J.-Y., Kim S.-E., Jung H.-K. et al. Clinicopathological characteristics and prognosis of signet ring cell carcinoma of the stomach // Gastric cancer. 2014. Vol. 17. P. 43-53. DOI: 10.1007/s10120-013-0234-1.
21. RenJ., Niu G., Wang X., Song T., Hu Z., Ke C. Effect of age on prognosis of gastric signet-ring cell carcinoma: a seer database analysis // Medical science monitor: international medical journal of experimental and clinical research. 2018. Vol. 24. P. 8524-8532. DOI: 10.12659/MSM.911766.
22. Jianhui C., Ertao Z., Jianjun P., Zulekha M.P., Jianbo X., Hui W. et al. Borrmann Type IV is an independent poor prognostic factor in young gastric cancer patients // Ann Hematol Oncol. 2019. Vol. 6 (10). P. 1274.
23. Dobritoiu M., Stepan A.E., Vere C.C., Simionescu C.E. Evaluation of gastric carcinomas histological patterns in relation to tumors aggressiveness parameters // Current health sciences journal. 2018. Vol. 44 (4). P. 342-346. DOI: 10.12865/CHSJ.44.04.03.
24. Achilli P., De Martini P., Ceresoli M., Mari G.M., Costanzi A., Maggioni D. et al. Tumor response evaluation after neoadjuvant chemotherapy in locally advanced gastric adenocarcinoma: a prospective, multi-center cohort study // Journal of gastrointestinal oncology. 2017. Vol. 8 (6). P. 1018-1025. DOI: 10.21037/jgo.2017.08.13.
25. Bravo Neto G. P., dos Santos E. G., Victer F. C., Carvalho C.E. Lymph node metastasis in early gastric cancer // Revista do Colegio Brasileiro de Cirurgioes. 2014. Vol. 41 (1). P. 11-17. DOI: 10.1590/s0100-69912014000100004.
26. Riihimaki M., Hemminki A., Sundquist K., Sundquist J., Hemminki K. Metastatic spread in patients with gastric cancer // Oncotarget. 2016. Vol. 7 (32). P. 52307-52316. DOI: 10.18632/oncotarget.10740.
27. Hosogi H., Shinohara H., Tsunoda S. et al. Staging laparoscopy for advanced gastric cancer: significance of preoperative clinicopathological factors // Langenbeck’s archives of surgery. 2017. Vol. 402 (1). P. 33-39. DOI: 10.1007/s00423-016-1536-7.
28. Coccolini F., Fugazzola P., Ansaloni L., Sartelli M., Cicuttin E., Leandro G. Advanced gastric cancer: the value of systemic and intraperitoneal chemotherapy // Acta biomedica: atenei Parmensis. 2018. Vol. 89 (8-S). P. 104-109. DOI: 10.23750/abm.v89i8-S.7904.
29. Ma J., Shen H., Kapesa L., Zeng S. Lauren classification and individualized chemotherapy in gastric cancer // Oncology letters. 2016. Vol. 11 (5). P. 2959-2964. DOI: 10.3892/ol.2016.4337.
30. Xu X., Zheng G., Zhang T., Zhao Y., Zheng Z. Is pathologic tumor regression grade after neo-adjuvant chemotherapy a promising prognostic indicator for patients with locally advanced gastric cancer? A cohort study evaluating tumor regression response // Cancer chemotherapy and pharmacology. 2019. Vol. 84 (3). P. 635-646. DOI: 10.1007/s00280-019-03893-4.
31. Neves Filho E., Pires A., de Sant’Ana R. O., Rabenhorst S., Hirth C. G., da Cunha M. The association among HER2, MET and FOXP3 expression and tumor regression grading in gastric adenocarcinoma // APMIS: acta pathologica, microbiologica, et immunologica Scandinavica. 2018. Vol. 126 (5). P. 389-395. DOI: 10.1111/apm.12840.
32. Lorenzen S., Blank S., Lordick F., Siewert J. R., Ott K. Prediction of response and prognosis by a score including only pretherapeutic parameters in 410 neoadjuvant treated gastric cancer patients // Annals of surgical oncology. 2012. Vol. 19 (7). P. 2119-2127. DOI: 10.1245/s10434-012-2254-1.
33. Nered S. N., Klimenkov A. A., Stilidi I. S., Perevoshchikov A. G., Delectorskaya V. V. Signet ring cell carcinoma of the stomach: clinical and morphological aspects, results of surgical treatment and prognosis // Voprosy of Oncology. 2006. T. 52, № 3. C. 294-300.
34. Nepomnyashchaya E. M., Kirichenko Yu. G., Gavrilova M.A. Features of the morphological picture of signet ring cell carcinoma of the stomach // Siberian Journal of Oncology. 2009. № 2. C. 146-147.
35. L.M. Portnoy, O.V. Vyatchanin, G.A. Stashuk. Stomach cancer. Problems of modern radiation diagnostics // Radiology — Practice. 2003. № 3. C. 11-30.
36. Mastoraki A., Papanikolaou I. S., Sakorafas G., Safioleas M. Facing the challenge of managing linitis plastica-review of the literature // Hepato-gastroenterology. 2009. Vol. 56 (96). C. 1773-1778.
37. Muraoka S., Tsuchida K., Iwasaki M., Izawa N., Jinnai H., Komatsubara T. A case report of gastric linitis plastica diagnosed by endoscopic ultrasound-guided fine needle aspiration // Medicine. 2017. Vol. 96 (50). e8937. DOI: 10.1097/MD.0000000000008937.
38. Ahn H.S., Lee H.J., Yoo M.W., Kim S.G., Im J.P., Kim S.H. Diagnostic accuracy of T and N stages with endoscopy, stomach protocol CT, and endoscopic ultrasonography in early gastric cancer // Journal of surgical oncology. 2009. Vol. 99 (1). P. 20-27. DOI: 10.1002/jso.21170.
39. Liu S., Liu S., Ji C., Zheng H., Pan X., Zhang Y. et al. Application of CT texture analysis in predicting histopathological characteristics of gastric cancers // European radiology. 2017. Vol. 27 (12). P. 4951-4959. DOI: 10.1007/s00330-017-4881-1.
40. Liu S., Shi H., Ji C., Zheng H., Pan X., Guan W. et al. Preoperative CT texture analysis of gastric cancer: correlations with postoperative TNM staging // Clinical radiology. 2018. Vol. 73 (8). 756. e1-756. e9. DOI: 0.1016/j.crad.2018.03.005.
41. Amelina I. D., Nesterov D. V., Shevkunov L. N., Karachun A. M., Pelipas Yu. V., Artemyeva A. S. Method for determining the type of gastric cancer according to Lauren classification by computed tomography. RF patent No. 2743221. Appl. 12.10.2020; Publ. 16.02.2021. (in Russian).
42. Beasley, T. M., & Schumacker, R. E. (1995). Multiple Regression Approach to Analyzing Contingency Tables: Post Hoc and Planned Comparison Procedures. The Journal of Experimental Education, 64 (1), 79-93.
Review
For citations:
Amelina A.D., Nesterov D.V., Shevkunov L.N., Karachun A.M., Artemyeva A.S., Bagnenko S.S., Trofimov S.L. Computed tomographic pneumogastrography in determining the types of gastric cancer according to the Lauren classification. Malignant tumours. 2021;11(2):13‑26. (In Russ.) https://doi.org/10.18027/2224-5057-2021-11-2-13-26