Preview

Злокачественные опухоли

Расширенный поиск

Применение ниволумаба при раке толстой кишки с синдромом Линча. Клиническое наблюдение

Полный текст:

Аннотация

Синдром Линча (СЛ), возникающий в результате нарушений репарации неспаренных оснований ДНК, характеризуется повышенным риском развития рака толстой кишки, эндометрия и мочевыводящих путей. Независимо от типа опухоли, иммунотерапия ингибиторами контрольных точек (ИКТ) была одобрена для лечения пациентов с неоперабельными или метастатическими опухолями с нарушением системы репарации ДНК (dMMR), что может быть опцией для лечения пациентов с СЛ. В статье описывается клиническое наблюдение пациентки с герминальной мутацией MLH1 и с первично-множественными злокачественными образованиями ободочной кишки, получавшей лечение ниволумабом в течение 26 месяцев. Это наблюдение демонстрирует успех иммунотерапии после 6 линий химиотерапии, подразумевая потенциальный контроль опухолевого роста у пациентов с СЛ.

Об авторах

Г. Г. Хакимова
ФГБУ «НМИЦ онкологии им. Н. Н. Блохина» Минздрава России
Россия

Гулноз Г. Хакимова, аспирант онкологического отделения лекарственных методов лечения (химиотерапевтическое) № 3

Москва



А. А. Трякин
ФГБУ «НМИЦ онкологии им. Н. Н. Блохина» Минздрава России; ГБУЗ «Московский Клинический Научный Центр им. А. С. Логинова» ДЗМ
Россия

Алексей А. Трякин, д. м. н., главный научный сотрудник отделения клинической фармакологии и химиотерапии

Москва



Г. А. Хакимов
Ташкентский педиатрический медицинский институт; Республиканский специализированный Научно-практический Медицинский Центр Онкологии и Радиологии
Узбекистан

Голиб А. Хакимов, д. м. н., проф., директор Ташкентского городского филиала Республиканского специализированного научно-практического центра, заведующий курсом онкологии кафедры хирургии

Ташкент



Список литературы

1. Burt R. Inheritance of colorectal cancer. Drug Discov Today Dis Mech 2007;4 (4): 293 – 300. DOI: 10.1016/j.ddmec. 2008.05.004.

2. Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. GenetMed2009;11 (1):35 – 41.

3. Yurgelun M. B., Kulke M. H., Fuchs C. S. et al. Cancer susceptibility gene mutations in individuals with colorectal cancer J Clin Oncol 2017;35 (10):1086 – 95. DOI: 10.1200/JCO. 2016.71.0012.

4. Lynch HT, Snyder CL, Shaw TG, Heinen CD and Hitchins MP: Milestones of Lynch syndrome: 1895 – 2015. Nat Rev Cancer. 15:181 – 194. 2015.

5. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Colon Cancer. Version 2.2019. https://www.nccn.org/professionals/physician_gls/pdf/colon. pdf.

6. www.accessdata.fda.gov

7. Sinicrope FA, Sargent DJ. Clin Cancer Res. 2012

8. Valle L, Vilar E, Tavtigian SV, Stoffel EM. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J Pathol. 2019;247 (5):574–588. doi:10.1002/path. 5229

9. Carethers J. M., Stoffel E. M. Lynch syndrome and Lynch syndrome mimics: the growing complex landscape of hereditary colon cancer. World J Gastroenterol 2015;21 (31):9253 – 61. DOI: 10.3748/wjg. v21. i31.9253.

10. Warthin AS. Hereditary with reference to carcinoma. Arch Intern Med (chic). 1913. 10.1001/archinte. 1913.00070050063006.

11. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2013. 10.1056/NEJMra012242.

12. Lynch HT. Natural history of colorectal cancer in hereditary nonpolyposis colorectal cancer (Lynch syndromes I and II) Dis Colon Rectum. 1988;31:439 – 444. doi: 10.1007/BF02552613.

13. Vasen HF. Screening for hereditary non-polyposis colorectal cancer: a study of 22 kindreds in the Netherlands. Am J Med. 1989;86:278 – 281. doi: 10.1016/0002 – 9343 (89) 90296 – 9.

14. Vasen HF. The international collaborative group on hereditary non polyposis colorectal Cancer (ICG-HNPCC) Dis Colon Rectum. 1991;34:424 – 425. doi: 10.1007/BF02053699.

15. Lynch HT. Hereditary nonpolyposis colorectal cancer (Lynch syndromes I and II). II Biomarker studies. Cancer. 1985;56:939 – 951. doi:10.1002/1097 – 0142 (19850815) 56:4<939::AID – CNCR2820560440>3.0. CO;2‑T.

16. Vasen HF. Guidelines for the clinical management of Lynch syndrome (hereditary non-polyposis cancer) J Med Genet. 2007;44:353 – 362. doi: 10.1136/jmg. 2007.048991.

17. Kastrinos F. Phenotype comparison of MLH1 and MSH2 mutation carriers in a cohort of 1,914 individuals undergoing clinical genetic testing in the United States. Cancer Epidemiol Biomark Prev. 2008. 10.1158/1055 – 9965.

18. Watson P. Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer. 1993;71:677 – 685. doi:10.1002/1097 – 0142 (19930201) 71:3<677::AID – CNCR2820710305>3.0. CO;2-#.

19. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.. Science 2017; 357: 409 – 413.

20. Venderbosch S, Nagtegaal ID, Maughan TS et al. Mismatch repair statusand BRAF mutation status in metastatic colorectal cancer patients: apooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res 2014; 20 (20): 5322 – 5330.

21. Taieb J, Shi Q, Pederson L, et al. Prognosis of microsatellite instability and/or mismatch repair deficiency stage III colon cancer patients after disease recurrence following adjuvant treatment: results of an accent pooled analysis of 7 studies. Ann Oncol. 2019 Jul 3. pii: mdz208. doi: 10.1093/annonc/mdz208. [Epub ahead of print].

22. Innocenti F, Ou FS, Qu X, et al. Mutational Analysis of Patients With Colorectal Cancer in CALGB/SWOG 80405 Identifies New Roles of Microsatellite Instability and Tumor Mutational Burden for Patient Outcome. J Clin Oncol. 2019 May 10;37 (14):1217 – 1227.

23. Yin J, Kong D. Mutation of hMSH3 and hMSH6 mismatch repair genes in genetically unstable human colorectal and gastric carcinomas. Hum Mutat. 1997. 10.1002/(SICI) 1098 – 1004 (1997) 10:6<474::AID-HUMU9>3.0. CO;2‑D.

24. Liu B. hMSH2 mutations in hereditary nonpolyposis colorectal cancer kindreds. Cancer Res. 1994;54:4590 – 4594.

25. Han HJ. Genomic structure of human mismatch repair gene, hMLH1, and its mutation analysis in patients with hereditary non-polyposis colorectal cancer (HNPCC) Hum Mol Genet. 1995;4:237 – 242. doi: 10.1093/hmg/4.2.237.

26. Wijnen J, Khan PM. Hereditary nonpolyposis colorectal cancer families not complying with the Amsterdam criteria show extremely low frequency of mismatch-repair-gene mutations. Am J Hum Genet. 1997. 10.1086/514847. [PMC free article] [PubMed]

27. https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon. pdf.

28. Tiwari A. K., Roy H. K., Lynch H. T. Lynch syndrome in the 21st century: clinical perspectives. QJM 2016;109 (3):151 – 8. DOI: 10.1093/qjmed/hcv137.

29. Lichtenstein P., Holm N. V., Verkasalo P. K. et al. Environmental and heritable factors in the causation of cancer. Analyses of cohorts of twins from Sweden, Denmark, and Finland. Engl J Med 2000;343 (2):78 – 85. DOI: 10.1016/S0039–6257 (00) 00165‑X.

30. Yurgelun M. B., Kastrinos F. Tumor testing for microsatellite instability to identify Lynch syndrome: new insights into an old diagnostic strategy. J Clin Oncol 2019;37 (4):263 – 5. DOI: 10.1200/JCO. 18.01664.

31. Bonadona V., Bonaïti B., Olschwang S. et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 2011;305 (22): 2304 – 10. DOI: 10.1001/jama. 2011.743

32. Møller P., Seppälä T., Bernstein I. et al. Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: first report from the prospective Lynch syndrome database. Gut 2017;66 (3):464 – 72. DOI: 10.1136/gutjnl-2015 – 309675.

33. Joost P., Therkildsen C., Dominguez-Valentin M. et al. Urinary tract cancer in Lynch syndrome; increased risk in carriers of MSH2 mutations. Urology 2015;86 (6):1212 – 7. DOI: 10.1016/j.urology. 2015.08.018.

34. Kastrinos F., Mukherjee B., Tayob N. et al. Risk of pancreatic cancer in families with Lynch syndrome. JAMA 2009;302 (16): 1790 – 5. DOI: 10.1001/jama. 2009.1529.

35. Senter L., Clendenning M., Sotamaa K. et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 2008;135 (2):419 – 28.

36. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 372:2509 – 2520. 2015.

37. Study of Pembrolizumab (MK-3475) as Monotherapy in Participants With Previously-Treated Locally Advanced Unresectable or Metastatic Colorectal Cancer (MK-3475 – 164/KEYNOTE-164). Электронный ресурс: http://clinicaltrials.gov/show/NCT02460198, дата обращения 22.09.2018, 2018.

38. Study of Pembrolizumab (MK-3475) vs Standard Therapy in Participants With Microsatellite Instability-High (MSI-H) or Mismatch Repair Deficient (dMMR) Stage IV Colorectal Carcinoma (MK-3475 – 177/KEYNOTE-177). Электронный ресурс: http://clinicaltrials. gov/show/NCT02563002, дата обращения 22.09.2018, 2018.

39. Трякин А. А., Федянин М. Ю., Цуканов А. С., Шелыгин Ю. А., Покатаев И. А. и др. Микросателлитная нестабильность как уникальная характеристика опухолей и предиктор эффективности иммунотерапии. 2019; 9 (4)

40. Thompson R. H., Kuntz S. M., Leibovich B. C. et al. Tumor B7‑H1 is associated with poor prognosis in renal cell carcinoma patients with long-termfollow-up. Cancer Res 2006;66 (7):3381 – 5. DOI: 10.1158/0008 – 5472. CAN-05 – 4303. PMID: 16585157.

41. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency.. N Engl J Med. 2015;372:2509 – 2520.

42. Eng C, Kim TW, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019 Jun;20 (6):849 – 861.

43. Overman MJ, Lonardi S, KYM W, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repairdeficient/microsatellite instability-high metastatic colorectal cancer.. J Clin Oncol. 2018;36 (8):773 – 9.

44. H-J J Lenz, E Van Cutsem, M L Limon, et al. Durable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC). Ann Oncol, 2018, 29 (8), mdy424.019, https://doi.org/10.1093/annonc/mdy424.019.

45. Chalabi M, Fanchi LF, Van den Berg JG, et al. Neoadjuvant ipilimumab plus nivolumab in early stage colon cancer. Ann Oncol. 2018;29 (suppl 8):abstr LBA37.

46. Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017 Dec 21;377 (25):2500 – 2501.

47. Samstein R, Lee CH, Shoushtari A, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nature Genetics, 2019,51:202 – 206.

48. Schrock AB, Ouyang C, Sandhu J, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol. 2019 Apr 30. pii: mdz134. doi: 10.1093/annonc/mdz134.


Для цитирования:


Хакимова Г.Г., Трякин А.А., Хакимов Г.А. Применение ниволумаба при раке толстой кишки с синдромом Линча. Клиническое наблюдение. Злокачественные опухоли. 0;.

For citation:


Khakimova G.G., Tryakin A.A., Khakimov G.A. The Use of Nivolumab in Colorectal Cancer with Lynch Syndrome. A Case Report. Malignant tumours. 0;. (In Russ.)

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2224-5057 (Print)
ISSN 2587-6813 (Online)