Preview

Злокачественные опухоли

Расширенный поиск

Молекулярные механизмы резистентности к терапии моноклональными антителами у больных плоскоклеточным раком языка и слизистой дна полости рта

https://doi.org/10.18027/2224-5057-2018-8-4-13-25

Полный текст:

Аннотация

В обзоре проведен анализ современных данных о молекулярных механизмах резистентности к терапии моноклональными антителами у больных плоскоклеточным раком языка и слизистой дна полости рта. Подробно описаны механизмы резистентности к моноклональным анти-ERBB-антителам и анти-PD1‑антителам и пути ее преодоления. Проведенный анализ позволил выделить ряд факторов, которые необходимо учитывать при назначении терапии моноклональными антителами: активацию альтернативных рецептрорных тирозин киназ; повышение экспрессии генов лигандов рецепторов; мутации в эффекторах и самих рецептрорных тирозин-киназах; нарушение образования функциональных димеров рецепторов; изменения в белках и кодирующих их генах, ответственных за регуляцию каскадов апоптоза, митоза, эпителиально-мезенхимального перехода; секрецию противовоспалительных цитокинов и иммуносупрессорных метаболитов.

Об авторах

Л. Ю. Владимирова
ФГБУ «Ростовский научно-исследовательский онкологический институт» Министерства здравоохранения РФ, Ростов-на-Дону
Россия

д. м. н., проф., руководитель отдела лекарственного лечения опухолей, руководитель отделения противоопухолевой лекарственной терапии № 1



А. А. Льянова
ФГБУ «Ростовский научно-исследовательский онкологический институт» Министерства здравоохранения РФ, Ростов-на-Дону
Россия
врач-онколог отделения противоопухолевой лекарственной терапии № 1,


Е. М. Франциянц
ФГБУ «Ростовский научно-исследовательский онкологический институт» Министерства здравоохранения РФ, Ростов-на-Дону
Россия
д. м. н., проф., руководитель лаборатории иммунофенотипирования опухолей


Д. С. Кутилин
ФГБУ «Ростовский научно-исследовательский онкологический институт» Министерства здравоохранения РФ, Ростов-на-Дону
Россия
к. б. н., с. н. с. лаборатории молекулярной онкологии


М. А. Енгибарян
ФГБУ «Ростовский научно-исследовательский онкологический институт» Министерства здравоохранения РФ, Ростов-на-Дону
Россия
к. м. н., зав. отделением опухолей головы и шеи


Список литературы

1. Архипова О. Е., Черногубова Е. А., Лихтанская Н. В., Тарасов В. А., Кит О. И., Еремеева А. А., Матишов Д. Г. Анализ встречаемости онкологических заболеваний в Ростовской области. Пространственно-временная статистика // Наука Юга России. 2013. Т. 9. № 3. С. 7–14.

2. Мудунов А. М., Нариманов М. Н., Сафаров Д. А. Новые возможности иммунотерапии в лечении распространенного рецидивного плоскоклеточного рака органов головы и шеи // Опухоли головы и шеи. 2017. Т. 7. № 2. С. 99–105.

3. Global, regional, and national age – sex specific all-cause and cause-specific mortality for 240 causes of death, 1990‑2013: a systematic analysis for the Global Burden of Disease Study 2013. GBD 2013 Mortality Causes of Death Collaborators. The Lancet. 2014. Vol. 385. No. 9963. P. 117‑171.

4. Гельфанд И. М., Романов И. С., Минкин А. У. Тактика лечения плоскоклеточного рака полости рта стадий сT1–2сN0M0 // Опухоли головы и шеи. 2014. Т. 2. С. 33–36.

5. Мудунов А. М. Ниволумаб в лечении рефрактерного рецидивного и метастатического плоскоклеточного рака органов головы и шеи. Результаты клинического исследования III фазы CheckMate 141 // Опухоли головы и шеи. 2017. № 3. С. 74–86.

6. Льянова А. А., Владимирова Л. Ю., Франциянц Е. М., Кутилин Д. С., Енгибарян М. А. Молекулярные основы современной таргетной терапии плоскоклеточного рака языка и слизистой дна полости рта моноклональными антителами // Злокачественные опухоли. 2017. Т. 7 (4). С. 77–87. DOI: 10.18027 / 2224‑5057‑2017‑7‑4‑77‑87.

7. Поляновский О. Л., Лебеденко Е. Н., Деев С. М. ERBB онкогены – мишени моноклональных антител // Биохимия. 2012. Т. 77. Вып. 3. С. 289–311.

8. Zandberg D. P., Strome S. E. The role of the PD‑L1: PD-1 pathway in squamous cell carcinoma of the head and neck. Oral Oncol. 2014. Vol. 50. P. 627–632.

9. Mellman I., Coukos G., Dranoff G. Cancer immunotherapy comes of age. Nature. 2011. Vol. 480. P. 480–489.

10. Ferris R., Blumenschein G., Fayette J. et al. Nivolumab for recurrent squamouscell carcinoma of the head and neck. N. Engl. J. Med. 2016. Vol. 375 (19). P. 1856–1867.

11. Bauml J., Siewert T., Pfister D. G. et al. Preliminary results from KEYNOTE-055: Pembrolizumab after Cisplatin and Cetuximab failure in Head and Necksquamous cell carcinoma. ASCO Annual Meeting, Best of ASCO designation: 2016. J. Clin. Oncol. 2016. Vol. 34 (suppl). abstr 6011.

12. Jager M., Schoberth A., Ruf, P., Hess J., Lindhofer H. Cancer Res. 2009. Vol. 69. P. 4270‑4276.

13. Sonnenblick A., Brohee S., Fumagalli D., Rothe F., Vincent D. et al. Integrative proteomic and gene expression analysis identify potential biomarkers for adjuvant trastuzumab resistance: analysis from the Fin-her phase III randomized trial. Oncotarget. 2015. Vol. 6 (30). P. 30306–16.

14. Li R., Pourpak A., Morris S. W. J. Med. Chem. 2009. Vol. 27. P. 4981–5004.

15. Zuo Q., Shi M., Li L. et al. Development of cetuximab-resistant human nasopharyngeal carcinoma cell lines and mechanisms of drug resistance. Biomed. Pharmacother. 2010. Vol. 64. P. 550–558.

16. Riesterer O., Yang Q., Raju U. et al. Combination of anti-IGF-1R antibody A12 and ionizing radiation in upper respiratory tract cancers. Int. J. Radiat. Oncol. Biol. Phys. 2011. Vol. 79. P. 1179–1187.

17. Quesnelle K. M., Grandis J. R. Dual kinase inhibition of EGFR and HER2 overcomes resistance to cetuximab in a novel in vivo model of acquired cetuximab resistance. Clin. Cancer Res. 2011. Vol. 17. P. 5935–5944.

18. Yonesaka K., Zejnullahu K., Okamoto I. et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci. Transl. Med. 2011. Vol. 3. 99ra86.

19. Кутилин Д. С., Айрапетова Т. Г., Анистратов П. А., Пыльцин С. П., Лейман И. А. и др. Изменение относительной копийности генетических локусов во внеклеточной ДНК у пациентов с аденокарциномой легкого // Известия высших учебных заведений. Северо-Кавказский регион. Естественные науки. 2017. № 3–2 (195–192). С. 74–82.

20. Sierra J. R., Tsao M. S. c-MET as a potential therapeutic target and biomarker in cancer. Ther. Adv. Med. Oncol. 2011. Vol. 3. P. S21 – S35.

21. Birkeland A. C., Swiecicki P. L., Brenner J. C., Shuman A. G. A review of drugs in development for the personalized treatment of head and neck squamous cell carcinoma. Expert Review of Precision Medicine and Drug Development. 2016. Vol. 1 (4). P. 379–385.

22. Liska D., Chen C. T., Bachleitner-Hofmann T. et al. HGF rescues colorectal cancer cells from EGFR inhibition via MET activation. Clin. Cancer. Res. 2011. Vol. 17. P. 472–482.

23. Tol J., Punt C. J. Clin. Ther. 2010. Vol. 32. P. 437–453.

24. Allegra C. J., Jessup J. M., Somerfield M. R., Hamilton S. R., Hammond E. H., Hayes D. F et al. J. Clin. Oncol. 2009. Vol. 27. P. 2091–2096.

25. Christensen B. C., Moyer B. J., Avissar M. et al. A let-7 microRNA-binding site polymorphism in the KRAS 3UTR is associated with reduced survival in oral cancers. Carcinogenesis. 2009. Vol. 30. P. 1003–1007.

26. Rampias T., Giagini A., Matsuzaki H. et al. Genetic alterations in HRAS gene in relation to outcoume and response to cetuximab in head and neck squamous cell carcinoma. Paper presented at: ASCO Annual Meeting. June 1‑5, 2012, Chicago.

27. Arkell R. S., Dickinson R. J., Squires M. et al. DUSP6 / MKP-3 inactivates ERK1 / 2 but fails to bind and inactivate ERK5. Cell Signal. 2008. Vol. 20. P. 836–843.

28. Wong V. C., Chen H., Ko J. M. et al. Tumor suppressor dual-specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelialmesenchymal transition (EMT) – associatedphenotype. Int. J. Cancer. 2012. Vol. 130. P. 83–95.

29. Okudela K., Yazawa T., Woo T. et al. Down-regulation of DUSP6 expression in lung cancer: Its mechanism and potential role in carcinogenesis. Am. J. Pathol. 2009. Vol. 175. P. 867–881.

30. Oliveras-Ferraros C., Vazquez-Martin A., Cufi S. et al. Stem cell property epithelial-to-mesenchymal transition is a core transcriptional network for predicting cetuximab (Erbitux) efficacy in KRAS wildtype tumor cells. J. Cell. Biochem. 2011. Vol. 112. P. 10–29.

31. Ligresti G., Militello L., Steelman L. S. et al. PIK3CA mutations in human solid tumors: Role in sensitivity to various therapeutic approaches. Cell Cycle. 2009. Vol. 8. P. 1352–1358.

32. Pedrero J. M., Carracedo D. G., Pinto C. M. et al. Frequent genetic and biochemical alterations of the PI 3‑K / AKT / PTEN pathway in head and neck squamous cell carcinoma. Int. J. Cancer. 2005. Vol. 114. P. 242–248.

33. Rebucci M., Peixoto P., Dewitte A. et al. Mechanisms underlying resistance to cetuximab in the HNSCC cell line: Role of AKT inhibition in bypassing this resistance. Int. J. Oncol. 2011. Vol. 38. P. 189–200.

34. Mriouah J., Boura C., Pinel S. et al. Cellular response to cetuximab in PTEN-silenced head and neck squamous cell carcinoma cell line. Int. J. Oncol. 2010. Vol. 37. P. 1555–1563.

35. Nagata Y., Lan K. H., Zhou X. Cancer Cell. 2004. Vol. 6. P. 117–127.

36. Wheeler D. L., Iida M., Kruser T. J., Nechrebecki M. M., Dunn E. F. et al. Cancer Biol. Ther. 2009. Vol. 8. P. 696–703.

37. Kijima T., Niwa H., Steinman R. A. et al. STAT3 activation abrogates growth factor dependence and contributes to head and neck squamous cell carcinoma tumor growth in vivo. Cell Growth Differ. 2002. Vol. 13. P. 355–362.

38. Bonner J. A., Yang E. S., Trummell H. Q. et al. Inhibition of STAT-3 results in greater cetuximab sensitivity in head and neck squamous cell carcinoma. Radiother. Oncol. 2011. Vol. 99. P. 339–343.

39. Onishi A., Chen Q., Humtsoe J. O. et al. STAT3 signaling is induced by intercellular adhesion in squamous cell carcinoma cells. Exp. Cell Res. 2008. Vol. 314. P. 377–386.

40. Boehm A..L, Sen M., Seethala R. et al. Combined targeting of epidermal growth factor receptor, signal transducer and activator of transcription-3, and bcl-X (L) enhances antitumor effects in squamous cell carcinoma of the head and neck. Mol. Pharmacol. 2008. Vol. 73. P. 1632–1642.

41. Hatakeyama H., Cheng H., Wirth P. et al. Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximabresistance in head and neck squamous cell carcinoma. PLoS ONE. 2010. Vol. 5. e12702.

42. Tinhofer I., Klinghammer K., Weichert W. et al. Expression of amphiregulin and EGFRvIII affect outcome of patients with squamous cell carcinoma of the head and neck receiving cetuximab-docetaxel treatment. Clin. Cancer Res. 2011. Vol. 17. P. 5197–5204.

43. Bedi A., Chang X., Noonan K. et al. Inhibition of TGF-enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol. Cancer. Ther. 2012. Vol. 11. P. 2429–2439.

44. Dempke W. C., Heinemann V. Eur. J. Cancer. 2009. Vol. 45. P. 1117–1128.

45. Sergina N. V., Rausch M., Wang D., Blair J., Hann B., Shokat K. M., Moasser M. M. Nature. 2007. Vol. 445. P. 437–441.

46. Wheeler D. L., Huang S., Kruser T. J., Nechrebecki M. M., Armstrong E. A. et al. Oncogene. 2008. Vol. 27. P. 3944–3956.

47. Hopper-Borge E. A., Nasto R. E., Ratushny V., Weiner L. M., Golemis E. A., Astsaturov I. Expert. Opin. Ther. Targets. 2009. Vol. 13. P. 339–362.

48. Hama T., Yuza Y., Suda T. et al. Functional mutation analysis of EGFR family genes and corresponding lymph node metastases in head and neck squamous cell carcinoma. Clin. Exp. Metastasis. 2012. Vol. 29. P. 19–25.

49. Wheeler S. E., Suzuki S., Thomas S. M. et al. Epidermal growth factor receptor variant III mediates head and neck cancer cell invasion via STAT3 activation. Oncogene. 2010. Vol. 29. P. 5135–5145.

50. Johns T. G., Adams T. E., Cochran J. R., Hall N. E., Hoyne P. A., Olsen M. J., Kim Y. S. et al. Identification of the epitope for the epidermal growth factor receptor-specific monoclonal antibody 806 reveals that it preferentially recognizes an untethered form of the receptor. J. Biol. Chem. 2004. Vol. 279. P. 30375–30384.

51. Chau N. G., Perez-Ordonez B., Zhang K. et al. The association between EGFR variant III, HPV, p16, c-MET, EGFR gene copy number and response to EGFR inhibitors in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck Oncol. 2011. Vol. 3. P. 11.

52. Chandarlapaty S., Scaltriti M., Angelini P., Ye Q., Guzman M., Hudis C. A. et al. Oncogene. 2010. Vol. 29. P. 325–334.

53. Liccardi G., Hartley J. A., Hochhauser D. EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res. 2011 Vol. 71. P. 1103–1114.

54. Hung L. Y., Tseng J. T., Lee Y. C. et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res. 2008. Vol. 36. P. 4337–4351.

55. Hoshino M., Fukui H., Ono Y. et al. Nuclear expression of phosphorylated EGFR is associated with poor prognosis of patients with esophageal squamous cell carcinoma. Pathobiology. 2007. Vol. 74. P. 15–21.

56. Lo H. W., Xia W., Wei Y. et al. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res. 2005. Vol. 65. P. 338–348.

57. Hoellein A., Pickhard A., von Keitz F. et al. Aurora kinase inhibition overcomes cetuximab resistance in squamous cell cancer of the head and neck. Oncotarget. 2011. Vol. 2. P. 599–609.

58. Wu C. C., Yu C. T., Chang G. C. et al. Aurora-A promotes gefitinib resistance via a NF-B signalingpathway in p53 knockdown lung cancer cells. Biochem. Biophys. Res. Commun. 2011. Vol. 405. P. 168–172.

59. Huether A., Hopfner M., Baradari V. et al. EGFR blockade by cetuximab alone or as combination therapy for growth control of hepatocellular cancer. Biochem. Pharmacol. 2005. Vol. 70. P. 1568–1578.

60. Huang S., Benavente S., Armstrong E. A. et al. P53 modulates acquired resistance to EGFR inhibitors and radiation. Cancer Res. 2011. Vol. 71. P. 7071–7079.

61. Holz C., Niehr F., Boyko M. et al. Epithelial-mesenchymal-transition induced by EGFR activation interferes with cell migration and response to irradiation and cetuximab in head and neck cancer cells. Radiother. Oncol. 2011. Vol. 101. P. 158–164.

62. Cowling V. H., Cole M. D. E-cadherin repression contributes to c-Myc-induced epithelial cell transformation. Oncogene. 2007. Vol. 26. P. 3582–3586.

63. Thiery J. P. Epithelial – mesenchymal transitions in development and pathologies. Curr. Opin. Cell. Biol. 2003. Vol. 15. P. 740–746.

64. Skvortsova I., Skvortsov S., Raju U. et al. Epithelial- to-mesenchymal transition and c-myc expression are the determinants of cetuximab-induced enhancement of squamous cell carcinoma radioresponse. Radiother. Oncol. 2010. Vol. 96. P. 108–115.

65. Vaupel P., Mayer A. Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 2007. Vol. 26. P. 225–239.

66. Wouters A., Boeckx C., Vermorken J. B., Van den Weyngaert D., Peeters M., Lardon F. The intriguing interplay between therapies targeting the epidermal growth factor receptor, the hypoxic micro environment and hypoxia-inducible factors. Curr. Pharm. Des. 2012. Vol. 19. P. 907–917.

67. Wang X., Schneider A. HIF-2‑mediated activation of the epidermal growth factor receptor potentiates head and neck cancer cell migration in response to hypoxia. Carcinogenesis. 2010. Vol. 31. P. 1202–1210.

68. Hoogsteen I. J., Marres H. A., van den Hoogen F. J. et al. Expression of EGFR under tumor hypoxia: Identification of a subpopulation of tumor cells responsible for aggressiveness and treatment resistance. Int. J. Radiat. Oncol. Biol. Phys. 2012. Vol. 84. P. 807–814.

69. Lu H., Liang K., Lu Y. et al. The anti-EGFR antibody cetuximab sensitizes human head and neck squamous cell carcinoma cells to radiation in part through inhibiting radiation-induced upregulation of HIF-1. Cancer Lett. 2012. Vol. 322. P. 78–85.

70. Beyer I., Li Z., Persson J., Liu Y., van Rensburg R., Yumul R., Zhang X. B., Hung M. C., Lieber A. Mol. Ther. 2011. Vol. 19. P. 479‑489.

71. Жуликов Я. А., Самойленко И. В., Демидов Л. В. Механизмы резистентности метастатической меланомы кожи к анти- PD-1 терапии // Российский биотерапевтический журнал. 2018. Т. 17. № 1. С. 34–46.

72. Саяпина М. С. Иммунорегуляторные функции ингибиторов PD-1 / PD-L1 и развитие к ним резистентности // Злокачественные опухоли. 2017. Т. 7 (2). С. 94–99.

73. Dempke W. C. M., Fenchel K., Uciechowski P., Dale S. P. Second- and third-generation drugs for immuno-oncology treatment – the more the better? Eur. J. Cancer. 2017. Vol. 74. P. 55–72.

74. Ramos R. N., Piaggio E., Romano E. Mechanisms of resistance to immune checkpoint antibodies. Handb. Exp. Pharmacol. 2017. DOI: 10.1007 / 164_2017_11. PMID: 28315073.

75. Hugo W., Zaretsky J. M., Sun L. et al. Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell. 2016. Vol. 165 (1). P. 35–44.

76. Thommen D. S. et al. Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells Defined by Coexpression of Multiple Inhibitory Receptors. Cancer Immunol. Res. 2015. Vol. 3. No. 12. P. 344–355.

77. Koyama S., Akbay E. A., Li Y. Y. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 2016. Vol. 7. P. 10501.

78. Kurtulus S., Sakuishi K., Ngiow S. F. et al. TIGIT predominantly regulates the immune response via regulatory T cells. J. Clin. Invest. 2015. Vol. 125 (11). P. 4053–4062.

79. Ribas A. et al. PD-1 Blockade Expands Intratumoral Memory T Cells. Cancer Immunol. Res. 2016. Vol. 4. No. 3. P. 194–203.

80. Garon E. B., Rizvi N. A., Hui R. et al. Pembrolizumab for the treatment of nonsmall-cell lung cancer. N. Engl. J. Med. 2015. Vol. 372 (21). P. 2018–2028.


Для цитирования:


Владимирова Л.Ю., Льянова А.А., Франциянц Е.М., Кутилин Д.С., Енгибарян М.А. Молекулярные механизмы резистентности к терапии моноклональными антителами у больных плоскоклеточным раком языка и слизистой дна полости рта. Злокачественные опухоли. 2018;8(4):13-25. https://doi.org/10.18027/2224-5057-2018-8-4-13-25

For citation:


Vladimirova L.Y., Lyanova A.A., Frantsiyants E.M., Kutilin D.S., Engibaryan M.A. Molecular mechanisms of resistance to monoclonal antibodies therapy patients with squamous cell carcinoma of the tongue and mucosa of the oral cavity. Malignant tumours. 2018;8(4):13-25. (In Russ.) https://doi.org/10.18027/2224-5057-2018-8-4-13-25

Просмотров: 124


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2224-5057 (Print)
ISSN 2587-6813 (Online)