Hepcidin-mediated regulation of iron metabolism in Myelodysplastic syndrome
https://doi.org/10.18027/2224-5057-2018-8-1-48-54
Abstract
Continuous red blood cell (RBC) transfusions are the main factor of hemosiderosis development, but many Myelodysplastic syndrome (MDS) patients develop iron overload at an early stage of the disease before the red blood cell (RBC) transfusions begin. Hepsidin is a hormone, produced by hepatocytes. It plays a leading role in iron hemostasis. MDS patients demonstrate elevated serum ferritin and hepcidin concentrations even before the RBC transfusions initiating. After 6 months of follow-up, serum ferritin concentration was increased up to 1278 µg/L without significant hepcidin concentration elevation. After 12 months, serum ferritin continued increasing up to 1898 µg/L with a significant hepcidin level decrease to 92±17 pg/ml. The patients group with a ferritin level above average after 12 months of treatment demonstrated significantly lower 5-year overall survival (OS) compared to the group with ferritin level after 12 months of treatment below 1598 µg/L: 5-year OS 9,1±8,7%; median OS – 1,7 years, median observation time 2,9 years (1,2–5,8) in the first group versus 5-year OS 44,4±17,0%; median OS – 4,5 years, median observation time 4,5 years (2,6–6) in the second one. This study findings demonstrating invert correlation of ferritin/hepcidin serum concentration may give evidence to the fact of functional hepatocytes reserves depletion and increased iron deposition in the liver. Altered hepcidin production may be a reason for the hemosiderosis over-progression that is negative for the patients’ quality of life. Serum hepcidin and ferritin concentrations must be assessed every 3 months for the iron helators could be administrated on time.
About the Author
G. A. DudinaRussian Federation
MD, PhD Med, Senior Researcher, Department of Oncohematology and Secondary Immunodeficiency Diseases
References
1. Santini V., Girelli D., Sanna A., Martinelli N., Duca L. et al. Hepcidin Levels and Their Determinants in Different Types of Myelodysplastic Syndromes. PLoSONE. 2011. Vol. 6 (8). e23109. doi:10.1371/journal.pone.
2. Грицаев С.В., Абдулкадыров К.М., Шихбабаева Д.И. Место хелаторной терапии в лечении больных миелодиспластическим синдромом (Обзор литературы) // Вестник гематологии. 2009. №3. C. 45–53.
3. Грицаев С.В., Абдулкадыров К.М. Шихбабаева Д.И. Миелодиспластический синдром (МДС) и перегрузка железом (результаты скринингового обследования 289 больных denovo МДС) // Фарматека. 2010. №10. C. 60–67.
4. Левина А.А., Казюкова Т.В., Цветаева Н.В. и др. Гепсидин как регулятор гомеостаза железа // Педиатрия. 2008. Том 87. №1.
5. Савченко В. Г., Абдулкадыров К.М., Масчан А.А., Сметанина Н.С., Голенков А.К. Открытое многоцентровое исследование деферазирокса в лечении посттрансфузионной перегрузки железом у пациентов с миелодиспластическими синдромами, талассемией и другими формами анемий // Гематология и трансфузиология. 2015. №4. C. 33–42. [Savchenko V.G., Abdulkadyrov K.M., Maschan A.A., Smetanina N.S., Golenkov A.K. Otkrytoe mnogotsentrovoe issledovanie deferaziroksa v lechenii posttransfuzionnoy peregruzki zhelezom u patsientov s mielodisplasticheskimi sindromami, talassemiey i drugimi formami anemiy. Gematologiya i transfuziologiya. 2015. No. 4. P. 33–42 (In Russ.)].
6. Cortelezzi A., Cattaneo C., Cristiani S., Duca. L, Sarina B. et al. Non- transferrin-bound iron in myelodysplastic syndromes: a marker of ineffective erythropoiesis? Hematol. J. 2000. Vol. 1. P. 153–158.
7. Ganz T., Nemeth E. Hepcidin and disorders of iron metabolism. Annu.Rev. Med. 2011. Vol. 62. P. 347–360.
8. Crichton R.R. Iron metabolism: from molecular mechanisms to clinical consequences. 3rd edition. Wiley, 2009. 482 p.
9. Pigeon C., Ilyin G., Courselaud B., Leroyer P., Turlin B., Brissot P. et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 2001. Vol. 276. P. 7811–7819.
10. Nicolas G., Bennoun M., Devaux. I, Beaumont C., Grandchamp B., Kahn A. et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl. Acad.Sci. USA. 2001. Vol. 98. P. 8780–8785.
11. Loreal O., Cavey T., Bardou-Jacquet E., Guggenbuhl P., Ropert M., Brissot P. Iron, hepcidin, and the metal connection. Front. Pharmacol. 2014. Vol. 5. P. 128.
12. Ganz T. Systemic iron homeostasis. Physiol. Rev. 2013. Vol. 93. P. 1721–1741.
13. Zhao N., Zhang A.S., Enns C.A. Iron regulation by hepcidin. J. Clin. Invest. 2013. Vol. 123. P. 2337–2343.
14. Corradini E., Meynard D., Wu Q., Chen S., Ventura P., Pietrangelo A. et al. Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6) – SMAD signaling pathway in mice. Hepatology. 2011. Vol. 54. P. 273–284.
15. Ramos E., Kautz L., Rodriguez R., Hansen M., Gabayan V., Ginzburg Y. et al. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice. Hepatology. 2011. Vol. 53. P. 1333–1341.
16. Zhang A.S., Anderson S.A., Wang J., Yang F., DeMaster K., Ahmed R. et al. Suppression of hepatic hepcidin expression in response to acute iron deprivation is associated with an increase of matriptase-2 protein. Blood. 2011. Vol. 117. P. 1687–1699.
17. McKie A. T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D. et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell. 2000. Vol. 5. P. 299–309.
18. De Domenico I., Ward D.M., Nemeth E., Vaughn M.B., Musci G., Ganz T. et al. The molecular basis of ferroportin-linked hemochromatosis. Proc. Natl. Acad.Sci. USA. 2005. Vol. 102. P. 8955–8960.
19. Tefferi A., Vardiman J.V. Myelodysplastic syndromes. N. Engl. J. Med. 2009. Vol. 361. P. 1872–1885.
20. Fenaux P., Rose C. Impact of iron overload in myelodysplastic syndromes. Blood Rev. 2009. Vol. 23. Suppl. 1. P. S15–19.
21. Malcovati L., Porta M. G., Pascutto C., Invernizzi R., Boni M. et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J. Clin. Oncol. 2005. Vol. 23. P. 7594–7603.
22. Ganz T., Nemeth E. Hepcidin and disorders of iron metabolism. Annu.Rev. Med. 2011. Vol. 62. P. 347–360.
23. Brasse-Lagnel C., Karim Z., Letteron P., Bekri S., Bado A., Beaumont C. Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology. 2011. Vol. 140. e1261.
24. Donovan A., Lima C.A., Pinkus J. L., Pinkus G.S., Zon L. I. et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005. Vol. 1. P. 191–200.
25. Hentze M.W., Muckenthaler M.U., Galy B., Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010. Vol. 142. P. 24–38.
26. Tanno T., Bhanu N.V., Oneal P.A., Goh S.H., Staker P. et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat. Med. 2007. Vol. 13. P. 1096–1101.
27. Castagna A., Campostrini N., Zaninotto. F, Girelli D. Hepcidin assay in serumbySELDI-TOF-MS and other approaches. J. Proteomics. 2010. Vol. 73. P. 527–536.
28. Макешова А.Б., Левина А.А., Мамукова Ю.И., Цибульская М.М., Макарова П.М., Романова Е. А, Судариков А.Б., Головкина Л.Л., Стремоухова А. Г., Паровичникова Е.Н., Савченко В. Факторы, определяющие развитие перегрузки железом, у больных острыми лейкозами и апластической анемией // Терапевтический архив. 2010. №7. С. 26–29.
29. Armand P., Kim H. T., Rhodes J., Sainvil M.M., Cutler C. et al. Iron Overload in Patients with Acute Leukemia or MDS Undergoing Myeloablative Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2011. Vol. 17. P. 852–860.
Review
For citations:
Dudina G.A. Hepcidin-mediated regulation of iron metabolism in Myelodysplastic syndrome. Malignant tumours. 2018;8(1):48-54. (In Russ.) https://doi.org/10.18027/2224-5057-2018-8-1-48-54