Preview

Злокачественные опухоли

Расширенный поиск

Опухолевые стволовые клетки при раке молочной железы. Роль в патогенезе и подходы к терапии

https://doi.org/10.18027/2224-5057-2016-2-22-27

Полный текст:

Аннотация

Рак молочной железы занимает лидирующее место среди всех онкологических заболеваний у женщин в мире, в т. ч. и в России. Несмотря на большие достижения в комплексном лечении, к сожалению, отдаленные метастазы рака молочной железы могут развиваться у больных на ранних стадиях заболевания. Данный феномен может быть объяснен новой теорией опухолевых стволовых клеток, способных в течение неограниченного периода времени делиться и поддерживать дальнейшее развитие первичной опухоли. В настоящем обзоре представлены концепция опухолевых стволовых клеток, их клиническое и прогностическое значение в патогенезе рака молочной железы, влияние на развитие резистентности к цитостатическим препаратам, а также перспективы новых и эффективных стратегий и подходов к системной противоопухолевой терапии рака молочной железы.

Об авторах

Константин Сергеевич Титов
Московский клинический научный центр Департамента здравоохранения г. Москвы; Российский национальный исследовательский медицинский университет им. Н. И. Пирогова Минздрава РФ
Россия

д. м.н., заведующий онкохирургическим отделением опухолей кожи и мягких
тканей; доцент кафедры онкологии и лучевой терапии лечебного факультета



Ани Погосовна Оганесян
Российский национальный исследовательский медицинский университет им. Н. И. Пирогова Минздрава РФ
Россия

студентка 6 курса лечебного факультета



Даниил Леонидович Ротин
Московский клинический научный центр Департамента здравоохранения г. Москвы
Россия

д. м.н., заведующий патoлогоанатомическим отделением



Денис Анатольевич Рябчиков
Российский онкологический научный центр им. Н. Н. Блохина Минздрава РФ
Россия

к. м.н., старший научный сотрудник хирургического отделения опухолей молочных желез



Наталья Васильевна Лепкова
Российский национальный исследовательский медицинский университет им. Н. И. Пирогова Минздрава РФ
Россия

к. м.н., доцент кафедры онкологии и лучевой терапии лечебного факультета



Список литературы

1. Visvander J. E., Lindeman G. J. // Cell Stem Cell. 2012. V.10. N5. P. 717–728.

2. Luo Y., Zhou X., Yakisich J. S. // Onco Targets Ther. 2014. V. 7. P. 1129–1134.

3. Plaks V., Kong N., Werb Z. // Cell Stem Cell. 2015. V. 16. № 3. P. 225–238.

4. Torre LA, Bray F, Siegel RL, Ferlay J., Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin 2015;65:87–108.

5. Li X., Lewis M. T., Huang J. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008;100(9):672–9.

6. Lee H. E., Kim J. H., Kim Y. J. et al. An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer 2011;104:1730–8.

7. Morimoto K., Kim S. J., Tanei T. et al. Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci 2009;100:1062–8.

8. Tanei T., Morimoto K., Shimazu K. et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 2009; 15:4234–41.

9. Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 2013;108:378–387.

10. Schwanbeck R., Martini S., Bernoth K. et al. // The Notch signaling pathway: Molecular basis of cell content dependency // 2011. 90 (6–7). P. 572–81.

11. Eiken H. M., Adams R. M. // Dynamics of endothelial cell behavior in sprouting angiogenesis // Curr Opin cell Biol. – 2010. – 22(5). P, 617–25.

12. Louvi A., Artavanis-Tsakonas S. // Notch and disease: a growing field. Semin Cell Dev Biol 2012; 23(4): 473–80.

13. Zhai B, Yan HX, Liu SQ, et al. Reduced expression of E-cadherin/catenin complex in hepatocellular carcinomas. World J Gastroenterol 2008;14:5665–73.

14. Deus Moura R, Wludarski SC, Carvalho FM, et al. Immunohistochemistry applied to the differential diagnosis between ductal and lobular carcinoma of the breast. Appl Immunohistochem Mol Morphol 2013;21:1–12.

15. Dabbs DJ, Schnitt SJ, Geyer FC, et al. Lobular neoplasia of the breast revisited with emphasis on the role of E-cadherin immunohistochemistry. Am J Surg Pathol 2013;37: e1–e11.

16. Tang D, Xu S, Zhang Q, et al. The expression and clinical significance of the androgen receptor and E-cadherin in triplenegative breast cancer. Med Oncol 2012;29:526–33.

17. Gupta P. B., Onder T. T., Jiang G. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening // Cell. – 2009. – 138. – P. 645–59.

18. Perrone G, Gaeta LM, Zagami M, Nasorri F, Coppola R, Borzomati D, et al. In situ identification of CD44+/CD24-cancer cells in primary human breast carcinomas. PLoS One 2012;7: e43110.

19. G tte M, Yip GW. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 2006;66:10233–10237.

20. Schabath H, Runz S, Joumaa S, Altevogt P. CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 2006;119(Pt 2):314–325.

21. Balicki D. Moving forward in human mammary stem cell biology and breast cancer prognostication using ALDH1. Cell Stem Cell 2007;1:485–487.

22. Shackleton M., Vaillanl F., Simpson K. J. et al. Generation of a functional mammary gland from a single stem cell // Nature. 2006. Vol. 439. P. 84–88.

23. Ponti D., Costa A., Zaffaroni N. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties // Cancer Res. 2005. Vol. 65. P. 5506–5511.

24. Patrawala L., Calhoun T., Schneider-Broussard R et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2cancer cells are similarly tumorigenic // Cancer Res. 2005. Vol. 65. P. 6207–6219.

25. Li H. Z., Yi T. B., Wu Z. Y. Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells // BMC Cancer. 2008. Vol. 8. P. 135.

26. Creighton C. J., Li X., Landis M. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features // Proc. Natl. Acad. Sci. USA. 2009. Vol. 106. P. 13820–13825.

27. Abraham B. K., Fritz P., McClellan M. et al. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 2005;11(3): 1154–9.

28. Yu F., Yao H., Zhu P. et al. let‑7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007;131(6):1109–23.

29. Dean M., Fojo T., Bates S. Tumour stem cells and drug resistance // Nat. Rev. Cancer. 2005. Vol. 5. P. 275–284. 20. Smalley M. J., Clarke R. B. The mammary gland «side population»: A putative stem/progenitor cell marker? // J Mammary Gland. Biol. Neoplasia. 2005. Vol. 10. P. 37–47.

30. Marcato P., Dean C. A., Pan D. et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 2011;29(1):32–45.

31. Marangoni E., Lecomte N., Durand L. et al. CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts // Br. J. Cancer. 2009. Vol. 100. P. 918–922.

32. Visus C., Wang Y., Lozano-Leon A. et al. Targeting ALDHbright human carcinoma-initiating cells with ALDHlAlspecific CD8+ T Cells // Clin. Cancer Res. 2011. Vol. 17. P. 6174–6184.

33. Stylianou S., Clarke R. B., Brennan K. Aberrant activation of notch signaling in human breast cancer // Cancer Res. 2006. Vol. 66. P. 1517–1525.

34. Sjolund J., Manetopoulos C., Stockhausen M. T., Axelson H. The Notch pathway in cancer: Differentiation gone awry // Eur. J. Cancer. 2005. Vol. 41. P. 2620–2629.

35. Farnie G., Clarke R. B., Spence K. et al. Novel cell culture technique for primary ductal carcinoma in situ: Role of Notch and epidermal growth factor receptor signaling pathways // J. Natl. Cancer Inst. 2007. Vol. 99. P. 616–627.

36. Hirsch H. A., Iliopoulos D., Tsichlis P. N., Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009;69(19): 7507–11.

37. Ginestier C., Liu S., Diebel M. E. et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010;120(2): 485–97.


Для цитирования:


Титов К.С., Оганесян А.П., Ротин Д.Л., Рябчиков Д.А., Лепкова Н.В. Опухолевые стволовые клетки при раке молочной железы. Роль в патогенезе и подходы к терапии. Злокачественные опухоли. 2016;(2):22-27. https://doi.org/10.18027/2224-5057-2016-2-22-27

For citation:


Titov K.S., Oganesyan A.P., Rotin D.L., Ryabchickov D.A., Lepkova N.V. The tumor stem cells in breast cancer. The role in pathogenesis and approaches to therapy. Malignant tumours. 2016;(2):22-27. (In Russ.) https://doi.org/10.18027/2224-5057-2016-2-22-27

Просмотров: 275


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2224-5057 (Print)
ISSN 2587-6813 (Online)