Preview

Malignant tumours

Advanced search

Minimally invasive surgical treatment of glioblastomas using interstitial photodynamic therapy

https://doi.org/10.18027/2224-5057-2025-044

Abstract

   Aim: to study the possibilities of using interstitial photodynamic therapy as a part of complex therapy, a minimally invasive method of glioblastoma patients’ treatment.

   Material and methods: The study included 9 patients with glioblastoma who had one tumor focus with a maximum size of up to 3.5 cm and a Karnofsky score of at least 70 points. The study group included 6 (66.7 %) men and 3 (33.3 %) women. The average age of patients was 55.3 ± 9.8 years; 7 (77.8 %) patients had the first relapse of glioblastoma tumor, in 2 cases (22.2 %) glioblastoma was diagnosed for the first time. Photoditazine was used as a photosensitizer (PS), administered intravenously at a dose of 1 mg / kg. Interstitial irradiation was performed using a laser (Latus 2.5 (Atkus, Russia)) with a wavelength of 662 nm and a maximum power of 2.5 W and cylindrical scattering fibers. Spatial precise interstitial irradiation of the tumor volume was planned using special software. The duration of irradiation did not exceed 15 min. The light dose averaged 180 J / cm2.

   Results: No complications or side effects associated with the introduction of PS were noted in patients in the early postoperative period. Transient increase in neurological deficit after iPDT in the early postoperative period was noted in 2 (22.2 %). In 1 patient an increase in hemiparesis was noted, in another patient dysarthria and dysphasia appeared. At the same time, in one patient with hemiparesis, neurological deficit after surgery persisted for more than five weeks after iPDT, but significant regression of symptoms was noted in the following five weeks. Catamnesis was monitored in all 9 patients. The duration of observation after iPDT was up to 61 months. The main cause of death in all 9 patients was tumor progression. The median overall survival was 29.1 months. The median relapse-free survival was 13.3 months.

   Conclusion: iPDT is a selective minimally invasive technique with promising results and minimal side effects in the treatment of patients with glioblastomas. The technique is a potential treatment option for small and deep tumors in patients with high surgical risk and for patients with tumor recurrence.

About the Authors

A. Y. Rynda
Russian Neurosurgical Institute named after prof. A. L. Polenov — a branch of the National Medical Research Center named after V. A. Almazov Ministry of Health of Russia
Russian Federation

Artemii Yuryevich Rynda

191014; 12 Mayakovskaya St.; Saint Petersburg


Competing Interests:

The authors declare that there are no possible conflicts of interest



V. E. Olyushin
Russian Neurosurgical Institute named after prof. A. L. Polenov — a branch of the National Medical Research Center named after V. A. Almazov Ministry of Health of Russia
Russian Federation

Victor Emelyanovich Olyushin

191014; 12 Mayakovskaya St.; Saint Petersburg


Competing Interests:

The authors declare that there are no possible conflicts of interest



D. M. Rostovtsev
Russian Neurosurgical Institute named after prof. A. L. Polenov — a branch of the National Medical Research Center named after V. A. Almazov Ministry of Health of Russia
Russian Federation

Dmitrii Mikhailovich Rostovtsev

191014; 12 Mayakovskaya St.; Saint Petersburg


Competing Interests:

The authors declare that there are no possible conflicts of interest



Y. M. Zabrodskaya
Russian Neurosurgical Institute named after prof. A. L. Polenov — a branch of the National Medical Research Center named after V. A. Almazov Ministry of Health of Russia
Russian Federation

Yulia Mikhailovna Zabrodskaya

191014; 12 Mayakovskaya St.; Saint Petersburg


Competing Interests:

The authors declare that there are no possible conflicts of interest



G. V. Papayan
Russian Neurosurgical Institute named after prof. A. L. Polenov — a branch of the National Medical Research Center named after V. A. Almazov Ministry of Health of Russia; Academician I. P. Pavlov First St. Petersburg State Medical University
Russian Federation

Garry Vazgenovich Papayan

191014; 12 Mayakovskaya St.; 197022; 6–8 L’va Tolstogo St.; Saint Petersburg


Competing Interests:

The authors declare that there are no possible conflicts of interest



References

1. Louis D.N., Perry A., Wesseling P. The 2021 WHO Classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23(8):1231–1251. doi: 10.1093/neuonc/noab106

2. Ostrom Q.T., Cioffi G., Waite K., et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol 2021;23: III1–III105, doi: 10.1093/NEUONC/NOABё200

3. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., et al. Intraoperative photodynamic therapy in complex treatment of malignant gliomas. Burdenko’s Journal of Neurosurgery 2023;87(1):25–34 (In Russ.). doi: 10.17116/neiro20238701125

4. Stepp H., Stummer W. 5-ALA in the management of malignant glioma. Lasers Surg Med 2018;50:399–419. doi: 10.1002/lsm.22933

5. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., et al. Intraoperative fluorescence control with chlorin E6 in resection of glial brain tumors. Burdenko’s Journal of Neurosurgery 2021;85(4):20–28 (In Russ.). doi: 10.17116/neiro20218504120

6. Lietke S., Schmutzer M., Schwartz C. Interstitial Photodynamic Therapy Using 5-ALA for Malignant Glioma Recurrences. Cancers (Basel) 2021;13(8):1767, doi: 10.3390/cancers13081767

7. Rynda A.Y., Rostovthev D.M., Zabrodskaya Y.M., et al. Immunotherapy with autologous dendritic cells in the complex treatment of malignant gliomas - results. J Neurooncol 2024;166:309–319. doi: 10.1007/s11060-023-04559-1

8. Foglar M., Aumiller M., Quach S., et al. Interstitial photodynamic therapy of glioblastoma: An MRI-based follow-up analysis. Photodiagnosis and Photodynamic Therapy 2024;46:104117. doi: 10.1016/j.pdpdt.2024.104117

9. Muller P.J., Wilson B.C. Photodynamic therapy for malignant newly diagnosed supratentorial gliomas. J Clin Laser Med Surg 1996;14(5):263–270. doi: 10.1089/clm.1996.14.263

10. Rynda A.Y., Olyushin, V., Rostovtsev D. Immunotherapy with autological dendritic cells in the structure of complex treatment of gliomas. Neurosurgery 2024;70(Suppl. 1):196. doi: 10.1227/neu.0000000000002809_1244

11. Foglar M., Aumiller M., Bochmann K. Interstitial photodynamic therapy of glioblastomas: a long-term follow-up analysis of survival and volumetric MRI data. Cancers (Basel) 2023;15(9):2603. doi: 10.3390/cancers15092603

12. Romanishkin I.D., Savelieva T.A., Ospanov A., et al. Comparison of optical-spectral characteristics of glioblastoma at intraoperative diagnosis and ex vivo optical biopsy. Biomedical Photonics. 2024;13(4):4–12. doi: 10.24931/2413-9432-2024-13-4-4-12

13. Rynda A.Yu., Rostovtsev D.M., Olyushin V.E., et al. Therapeutic pathomorphosis in malignant glioma tissues after photodynamic therapy with сhlorin e6 (reports of two clinical cases). Biomedical Photonics 2020;9(2):45–54. doi: 10.24931/2413-9432-2020-9-2-45-54

14. Ospanov A., Romanishkin I., Savelieva T., et al. Optical differentiation of brain tumors based on raman spectroscopy and cluster analysis methods. Int J Mol Sci 2023;24(19):14432. doi: 10.3390/ijms241914432

15. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., et al. Comparative analysis of 5-ALA and chlorin E6 fluorescence-guided navigation in malignant glioma surgery. Pirogov Russian Journal of Surgery 2022;(1):5–14 (In Russ.). doi: 10.17116/hirurgia20220115

16. Johansson A., Faber F., Kniebühler G., et al. Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis. Laser Surg Med 2013;45(4):225–234. doi: 10.1002/lsm.22126

17. Savelieva T.A., Romanishkin I.D., Ospanov A., et al. Machine learning methods for spectrally-resolved imaging analysis in neuro-oncology. Biomedical Photonics 2024;13(4):40–54. doi: 10.24931/2413-9432-2024-13-4-40-54

18. Rynda A.Yu., Zabrodskaya Yu.M., Olyushin V.E., et al. Morphological evaluation of the effectiveness of fluorescence navigation with chlorin e6 in surgery for malignant gliomas. Russian Journal of Archive of Pathology 2021;83(5):13–20 (In Russ.). doi: 10.17116/patol20218305113

19. Henker C., Hiepel M.C., Kriesen T., et al. Volumetric assessment of glioblastoma and its predictive value for survival. Acta Neurochir 2019;161(8):1723–1732. doi: 10.1007/s00701-019-03966-6

20. Tzerkovsky D.A., Maslakov E.A., Bagrintsev D.A., et al. The role of photodynamic therapy in the treatment of primary, recurrent and metastatic malignant brain tumors. Biomedical Photonics 2018;7(2):37–49. doi: 10.24931/2413-9432-2018-7-2-37-49

21. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., et al. Fluorescent diagnostics with chlorin e6 in surgery of low-grade glioma. Biomedical Photonics 2021;10(4):35–43. doi: 10.24931/2413-9432-2021-10-4-35-43

22. Kostron H., Obwegeser A., Jakober R. Photodynamic therapy in neurosurgery : a review. J Photochem Photobiol B 1996;36(2):157–168. doi: 10.1016/S1011-1344(96)07364-2

23. Potapov A.A., Chobulov S.A., Nikitin P.V., et al. Intraoperative vascular fluorescence in cerebral glioblastomas and vascular histological features. Burdenko’s Journal of Neurosurgery 2019;83(6):21–34. doi: 10.17116/neiro20198306121

24. Rynda A.Yu., Rostovtsev D.M., Olyushin V.E., Zabrodskaya Yu.M. Fluorescence-guided resection of glioma using “photoditazin”. Grekov’s Bulletin of Surgery 2017;176(5):10–15 (In Russ.). doi: 10.24884/0042-4625-2017-176-5-10-15

25. Rafaelian A., Martynov B., Chemodakova K., et al. Photodynamic interstitial stereotactic therapy for recurrent malignant glioma. Asian J Oncol 2023;9:14. doi: 10.25259/ASJO-2022-69-(433)

26. Baran T.M., Foster T.H. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy. Med Phys 2014;41:1–8. doi: 10.1118/1.4862078

27. Rynda A., Olyushin V., Rostovtsev D. Fluorescence navigation in glioma surgery using 5 ALA and chlorin E6. Neuro-Oncology 2021;23(Suppl. 2):ii25. doi: 10.1093/neuonc/noab180.086

28. Schwartz C., Rühm A., Tonn J.-C., Kreth S., Kreth F.W. Surg-25 interstitial photodynamic therapy of DE-NOVO glioblastoma multiforme WHO IV. Neuro-Oncol 2015;17:v219–v220. doi: 10.1093/neuonc/nov235.25

29. Beck T.J., Kreth F.W., Beyer W., et al. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Laser Surg Med 2007;39(5):386–393. doi: 10.1002/lsm.20507

30. Curnow A., Haller J.C., Bown S.G. Oxygen Monitoring during 5-Aminolaevulinic Acid Induced Photodynamic Therapy in Normal Rat Colon Comparison of Continuous and Fractionated Light Regimes. J Photochem Photobiol B 2000;58(2–3):149–155. doi: 10.1016/S1011-1344(00)00120-2

31. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., et al. Patients with long-term survival in malignant gliomas after photodynamic therapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(6):54–61 (In Russ.). doi: 10.17116/jnevro202412406154

32. Stummer W., Beck T., Beyer W., et al. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neurooncol 2008;87(1):103–109. doi: 10.1007/s11060-007-9497-x

33. Рафаелян А.А., Мартынов Б.В., Чемодакова К.А., и др. Стереотаксическая фотодинамическая терапия рецидивных злокачественных глиом. Современные технологии в медицине. 2024;16(2):58–67, doi: 10.17691/stm2024.16.2.06. – Rafaelian A.A., Martynov B.V., Chemodakova K.A., Kholyavin A.I., Martynov R.S., Klimenkova E.Yu., Prokudin M. Yu., Papayan G.V., Et al. Stereotactic photodynamic therapy of recurrent malignant gliomas. Sovremennye tehnologii v medicine 2024;16(2):58 (In Russ.). doi: 10.17691/stm2024.16.2.06

34. Muller P.J., Wilson B.C. Photodynamic therapy of malignant brain tumours. Can J Neurol Sci 1990;17(2):193–198. doi: 10.1017/s0317167100030444.

35. Leroy H.A., Vermandel M., Leroux B., et al. MRI assessment of treatment delivery for interstitial photodynamic therapy of high-grade glioma in a preclinical model. Laser Surg Med 2018;50(5):460–468. doi: 10.1002/lsm.22744

36. Rynda A.Yu., Olyushin V.E., Rostovtsev D.M., et al. Results of microsurgical resection of glioblastomas under endoscopic and fluorescent control. Biomedical Photonics 2024;13(3):20–30. doi: 10.24931/2413-9432-2024-13-3-20-30

37. Origitano T.C., Reichman O.H. Photodynamic Therapy for Intracranial Neoplasms. Neurosurgery 1993;32(4):587–596. doi: 10.1227/00006123-199304000-00015

38. Rynda A.Y., Olyushin V.E., Rostovtsev D.M., et al. Patients with long-term survival in malignant gliomas after photodynamic therapy. Neurosci Behav Physi 2024;54:1215–1221. doi: 10.1007/s11055-024-01717-4

39. Savelieva T., Romanishkin I. Ospanov A. Machine learning and artificial intelligence systems based on the optical spectral analysis in neuro-oncology. Photonics 2025;12(1):37. doi: 10.3390/photonics12010037

40. Olyushin V.E., Kukanov K.K., Nechaeva A.S., et al. Photodynamic therapy in neurooncology. Biomedical Photonics 2023;12(3):25–35. doi: 10.24931/2413-9432-2023-12-3-25-35

41. Quach S., Schwartz C., Aumiller M., et al. Interstitial photodynamic therapy for newly diagnosed glioblastoma. J Neurooncol 2023;162(1):217–223. doi: 10.1007/s11060-023-04284-9

42. Rafaelyan A.A., Alekseev D.E., Martynov B.V., et al. Stereotactic photodynamic therapy for recurrent glioblastoma. Case report and literature review. Burdenko’s Journal of Neurosurgery 2020;84(5):81–88. doi: 10.17116/neiro20208405181

43. Krishnamurthy S., Powers S.K., Witmer P., Brown T. Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors. Laser Surg Med 2000;27(3):224–234. doi: 10.1002/1096-9101(2000)27:3<224::aid-lsm4>3.0.co;2-#

44. Powers S.K., Cush S.S., Walstad D.L., Kwock L. Stereotactic intratumoral photodynamic therapy for recurrent malignant brain tumors. Neurosurgery 1991;29(5):688–695. doi: 10.1097/00006123-199111000-00008

45. Rynda A.Y., Olyushin V., Rostovtsev D. Immunotherapy with autologous dendritic cells in the complex treatment of malignant gliomas - results. Neurosurgery 2025;71(Supplement_1):54, doi: 10.1227/neu.0000000000003360_209

46. Ramakrishnan D., Reppert M., Krycia M. Evolution and implementation of radiographic response criteria in neuro-oncology. Neurooncology Adv 2023;5(1):vdad118. doi: 10.1093/noajnl/vdad118

47. Myrzakhmetov B., Arnoux P., Mordon S., et al. Photophysical properties of protoporphyrin IX, pyropheophorbide-a, and Photofrin® in different conditions. Pharmaceuticals 2021;14(2):138, doi: 10.3390/ph14020138

48. Leroy H., Vermandel M., Vignion-Dewalle A., et al. Interstitial photodynamic therapy and glioblastoma: light fractionation in a preclinical model. Laser Surg Med 2017;49(5):506–515. doi: 10.1002/lsm.22620

49. Stupp R., Mason W.P., van den Bent M.J. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352(10):987–996. doi: 10.1056/NEJMoa043330

50. Vermandel M., Quidet M., Vignion-Dewalle A., et al. Comparison of different treatment schemes in 5-ALA interstitial photodynamic therapy for high-grade glioma in a preclinical model: An MRI Study. Photodiagnosis Photodyn Ther 2018;25(4):166–176. doi: 10.1016/j.pdpdt.2018.12.003.


Review

For citations:


Rynda A.Y., Olyushin V.E., Rostovtsev D.M., Zabrodskaya Y.M., Papayan G.V. Minimally invasive surgical treatment of glioblastomas using interstitial photodynamic therapy. Malignant tumours. 2025;15(2):25-39. (In Russ.) https://doi.org/10.18027/2224-5057-2025-044

Views: 374


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2224-5057 (Print)
ISSN 2587-6813 (Online)