Preview

Malignant tumours

Advanced search

Importance of tumor microenvironment inflammation cells in breast cancer

https://doi.org/10.18027/2224-5057-2024-14-1-67-73

Abstract

This review evaluates the role of the tumor microenvironment of breast cancer focusing on the evidence showing that tumor-associated macrophages, neutrophils, and mast cells directly participate in tumor initiation, proliferation, and metastasizing. This study also describes microenvironment cells pathologic assessment relevant for prognostication and treatment decision. Tumor-associated macrophages stimulate breast tumor progression, including tumor cell growth, invasion and metastasizing. Tumor-associated neutrophils are more prevalent in patients with severe disease or resistance to treatment and it can be explained by their pro-tumor / immunosuppressive characteristics. The contribution of mast cells to tumor development and progression appears to be a controversial area of research. The ability of mast cells to promote angiogenesis is viewed as a key process in promoting tumor development. However, elevated level of mast cells at tumor sites seems to be connected with improved outcomes.

About the Authors

К. S. Titov
S. P. Botkin City Clinical Hospital, Moscow Healthcare Department; Peoples' Friendship University of Russia named after Patrice Lumumba
Russian Federation

Titov Konstantin Sergeevich

5 2 nd Botkinskiy Proezd, Moscow 125284; 6 Miklukho‑Maklaya St., Moscow 117198



D.  N. Grekov
S. P. Botkin City Clinical Hospital, Moscow Healthcare Department; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
Russian Federation

Grekov Dmitrii Nikolaevich

5 2 nd Botkinskiy Proezd, Moscow 125284; ; Build. 1, 2 / 1 Barrikadnaya St.,
Moscow 125993



Е. I. Zakurdaev
S. P. Botkin City Clinical Hospital, Moscow Healthcare Department
Russian Federation

Zakurdaev Evgenii Ivanovich

5 2 nd Botkinskiy Proezd, Moscow 125284



Z. V. Lorie
S. P. Botkin City Clinical Hospital, Moscow Healthcare Department
Russian Federation

Lorie Zoya Viktorovna

5 2 nd Botkinskiy Proezd, Moscow 125284



О. V. Paklina
S. P. Botkin City Clinical Hospital, Moscow Healthcare Department
Russian Federation

Paklina Oksana Vladimirovna

5 2 nd Botkinskiy Proezd, Moscow 125284



Е. N. Gordienko
S. P. Botkin City Clinical Hospital, Moscow Healthcare Department
Russian Federation

Gordienko Elena Nikolaevna

5 2 nd Botkinskiy Proezd, Moscow 125284



References

1. Ferlay J., Shin H.R., Bray F., et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127(12):2893–917. https://doi.org/10.1002/ijc.25516

2. Clinical Guidelines. Breast cancer, 2021. Available at: https://cr.minzdrav.gov.ru/recomend/379_4 (posting date: 28.01.2021). (In Russ.)

3. Malygin S.E., Malygin E.N., Peterson S.B., et al. Local and regional recurrences after mastectomy with immediate reconstruction in breast cancer patients. Bulletin of RSMU 2013;4:24–27. (In Russ.)

4. Titov K.S., Oganesyan A.P., Rotin D.L., et al. The tumor stem cells in breast cancer. The role in pathogenesis and approaches to therapy. Zlokachestvennie opuholi = Malignant Tumors 2016;2:22–27. https://doi.org/10.18027/2224-5057-2016-2-22-27

5. Medrek C., Pontén F., Jirström K., Leandersson K. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 2012;12:306. https://doi.org/10.1186/1471-2407-12-306

6. Ryabchikov D.A., Chulkova S.V., Shamilov F.A., et al. Intratumoural effector cell subpopulations in breast cancer: a literature review and own data report. Creative Surgery and Oncology 2021;11(4):328–336. (In Russ.). https://doi.org/10.24060/2076-3093-2021-11-4-328-336

7. Denkert C., von Minckwitz G., Darb-Esfahani S., et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 2018;19:40–50. https://doi.org/10.1016/S1470-2045(17)30904-X

8. Litviakov N.V., Tsyganov M.M., Ibragimova M.K., et al. Expression of macrophage-associated genes in breast tumors: relation to tumor progression. Siberian journal of oncology 2017;16(6):47–56. (In Russ.). https://doi.org/10.21294/18144861-2017-16-6-47-56

9. Golubtsova A.K., Kantysheva E.B., Novoselova A.V., Popugaylo M.V. Neutrophils as factors that can stimulate and prevent the development of cancer. The role of neutrophils in metastasis, prognosis and possible points for therapeutic interventions. Scientific review. Medical Sciences 2022;4:10–15. (In Russ.). https://doi.org/10.17513/srms.1264

10. Lazarev A.F., Bobrov I.P., Cherdantseva T.M., et al. Mast cells and tumor growth. Siberian journal of oncology 2011;4(46):59–63. (In Russ).

11. Pe K.C. S., Saetung R., Yodsurang V., et al. Triple-negative breast cancer influences a mixed M1/M2 macrophage phenotype associated with tumor aggressiveness. PLoS ONE 2022;17(8):e0273044. https://doi.org/10.1371/journal.pone.0273044

12. Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014

13. Qiu S.Q., Waaijera S.J. H., Zwager M.C., et al. Tumor-associated macrophages in breast cancer: Innocent bystander or important player? Cancer Treat Rev 2018;70:178–189. https://doi.org/10.1016/j.ctrv.2018.08.010

14. Campbell M.J., Tonlaar N.Y., Garwood E.R., et al. Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat 2011;128(3):703–711. https://doi.org/10.1007/s10549-010-1154-y

15. Shiao S.L., Ruffell B., DeNardo D.G., et al. TH2-polarized CD4(+) T cells and macrophages limit efficacy of radiotherapy. Cancer Immunol Res 2015;3(5):518–525. https://doi.org/10.1158/2326-6066.CIR-14-0232

16. Laoui D., Movahedi K., Van Overmeire E., et al. Tumor-associated macrophages in breast cancer: Distinct subsets, distinct functions. Int J Dev Biol 2011;55(7–9):861–7. https://doi.org/10.1387/ijdb.113371dl

17. Miyasato Y., Shiota T., Ohnishi K., et al. High density of CD204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Sci 2017;108(8):1693–1700. https://doi.org/10.1111/cas.13287

18. Mohammed Z.M. A., Going J.J., Edwards J., et al. The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer 2012;107(5):864–73. https://doi.org/10.1038/bjc.2012.347

19. Qian B.Z., Zhang H., Li J., et al. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med 2015;212(9):1433–48. https://doi.org/10.1084/jem.20141555

20. Muthuswamy R., Okada N.J., Jenkins F.J., et al. Epinephrine promotes COX-2-dependent immune suppression in myeloid cells and cancer tissues. Brain Behav Immun 2017;62:78–86. https://doi.org/10.1016/j.bbi.2017.02.008

21. Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009;9(4):239–52. https://doi.org/10.1038/nrc2618

22. Sangaletti S., Di Carlo E., Gariboldi S., et al. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 2008;68(21):9050–9. https://doi.org/10.1158/0008-5472.CAN-08-1327

23. Chen J., Yao Y., Gong C., et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011;19(4):541–555. https://doi.org/10.1016/j.ccr.2011.02.006

24. Roh-Johnson M., Bravo-Cordero J.J., Patsialou A., et al. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 2014;33(33):4203–12. https://doi.org/10.1038/onc.2013.377

25. Stockmann C., Doedens A., Weidemann A., et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 2008;456(7223):814–8. https://doi.org/10.1038/nature07445

26. Junankar S., Shay G., Jurczyluk J., et al. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov 2015;5(1):35–42. https://doi.org/10.1158/21598290.CD-14-0621

27. Luo Y., Zhou H., Krueger J., et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 2006;116(8):2132–2141. https://doi.org/10.1172/JCI27648

28. Galmbacher K., Heisig M., Hotz C., et al. Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression. PLoS One 2010;5(3):e9572. https://doi.org/10.1371/journal.pone.0009572

29. Willingham S.B., Volkmer J.P., Gentles A.J., et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 2012;109(17):6662–7. https://doi.org/10.1073/ pnas.1121623109

30. Xu M., Liu M., Du X., et al. Intratumoral delivery of IL-21 overcomes anti-Her2/Neu resistance through shifting tumor-associated macrophages from M2 to M1 phenotype. J Immunol 2015;194(10):4997–5006. https://doi.org/10.4049/ jimmunol.1402603

31. Wu L., Saxena S., Goel P., et al. Breast cancer cell-neutrophil interactions enhance neutrophil survival and pro-tumorigenic activities. Cancers (Basel) 2020;12(10):2884. https://doi.org/10.3390/cancers12102884

32. Li Y., Cao X., Liu Y., et al. Neutrophil extracellular traps formation and aggregation Orchestrate induction and resolution of sterile crystal-mediated inflammation. Front Immunol 2018;9:1559. https://doi.org/10.3389/fimmu.2018.01559

33. Albrengues J., Shields M.A., Ng D., et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018;361(6409):eaao4227. https://doi.org/10.1126/science.aao4227

34. Queen M.M., Ryan R.E., Holzer R.G., et al. Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 2005;65(19):8896–904. https://doi.org/10.1158/0008-5472.CAN-05-1734

35. Soto-Perez-de-Celis E., Chavarri-Guerra Y., Leon-Rodriguez E., Gamboa-Dominguez A. Tumor-associated neutrophils in breast cancer subtypes. Asian Pac J Cancer Prev 2017;18(10):2689–2693. https://doi.org/10.22034/APJCP.2017.18.10.2689

36. Ocana A., Nieto-Jiménez C., Pandiella A., Templeton A.J. Neutrophils in cancer: prognostic role and therapeutic strategies. Mol Cancer 2017;16(1):137. https://doi.org/10.1186/s12943-017-0707-7

37. He G., Zhang H., Zhou J., et al. Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/ PD-1 signalling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res 2015;34:141. https://doi.org/10.1186/ s13046-015-0256-0

38. Mishalian I., Bayuh R., Eruslanov E., et al. Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17 a new mechanism of impaired antitumor immunity. Int J Cancer 2014;135(5):1178–86. https://doi.org/10.1002/ijc.28770

39. Huang S., Mills L., Mian B., et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 2002;161(1):125–34. https://doi.org/10.1016/ S0002-9440(10)64164-8

40. Singh S., Sadanandam A., Nannuru K.C., et al. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clin Cancer Res 2009;15(7):2380–6. https://doi.org/10.1158/1078-0432.CCR-08-2387

41. Marshall J.S., Portales-Cervantes L., Leong E. Mast cell responses to viruses and pathogen products. Int J Mol Sci 2019;20(17):4241. https://doi.org/10.3390/ijms20174241

42. Hanes M.R., Giacomantonio C.A., Marshall J.S. Mast cells and skin and breast cancers: A complicated and microenvironment-dependent role. Cells 2021;10(5):986. https://doi.org/10.3390/cells10050986

43. McHale C., Mohammed Z., Gomez G. Human skin-derived mast cells spontaneously secrete several angiogenesis-related factors. Front Immunol 2019;10:1445. https://doi.org/10.3389/fimmu.2019.01445

44. Wulaningsih W., Holmberg L., Garmo H., et al. Investigating the association between allergen-specific immunoglobulin E, cancer risk and survival. Oncoimmunology 2016;5(6):e1154250. https://doi.org/10.1080/2162402X.2016.1154250

45. Das Roy L., Curry J.M., Sahraei M., et al. Arthritis augments breast cancer metastasis: Role of mast cells and SCF/cKit signaling. Breast Cancer Res 2013;15(2):R32. https://doi.org/10.1186/bcr3412

46. Samoszuk M., Corwin M.A. Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. Int J Cancer 2003;107(1):159–63. https://doi.org/10.1002/ijc.11340

47. Majorini M.T., Cancila V., Rigoni A., et al. Infiltrating mast cell-mediated stimulation of estrogen receptor activity in breast cancer cells promotes the luminal phenotype. Cancer Res 2020;80(11):2311–2324. https://doi.org/10.1158/00085472.CAN-19-3596

48. Carpenco E., Ceauşu R.A., Cimpean A.M., et al. Mast cells as an indicator and prognostic marker in molecular subtypes of breast cancer. In Vivo 2019;33(3):743–748. https://doi.org/10.21873/invivo.11534

49. Cimpean A.M., Tamma R., Ruggieri S., et al. Mast cells in breast cancer angiogenesis. Crit Rev Oncol Hematol 2017;115:23–26. https://doi.org/10.1016/j.critrevonc.2017.04.009

50. Ueshima C., Kataoka T.R., Hirata M., et al. The killer cell Ig-like receptor 2DL4 expression in human mast cells and its potential role in breast cancer invasion. Cancer Immunol Res 2015;3(8):871–80. https://doi.org/10.1158/2326-6066. CIR-14-0199

51. Kuonen F., Laurent J., Secondini C., et al. Inhibition of the Kit ligand/c-Kit axis attenuates metastasis in a mouse model mimicking local breast cancer relapse after radiotherapy. Clin Cancer Res 2012;18(16):4365–74. https://doi.org/10.1158/1078-0432.CCR-11-3028


Review

For citations:


Titov К.S., Grekov D.N., Zakurdaev Е.I., Lorie Z.V., Paklina О.V., Gordienko Е.N. Importance of tumor microenvironment inflammation cells in breast cancer. Malignant tumours. 2024;14(1):67-73. (In Russ.) https://doi.org/10.18027/2224-5057-2024-14-1-67-73

Views: 511


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2224-5057 (Print)
ISSN 2587-6813 (Online)