ЭКСПРЕССИОННЫЙ АНАЛИЗ МИКРОРНК ДЛЯ ДИАГНОСТИКИ И ПРОГНОЗА РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ


https://doi.org/10.18027/2224-5057-2012-2-90-97

Полный текст:


Аннотация

В работе проанализированы данные научной литературы последних лет, посвящённые изучению роли микроРНК в возникновении и прогрессировании рака молочной железы, возможности использования этих молекул в качестве биомаркёров рака. Приведены результаты собственных исследований микроРНК. В работе проведен анализ уровней экспрессии 14 микроРНК, ассоциированных с развитием рака молочной железы, в 54 образцах опухолевой и нормальной ткани (27 пациентов). Показано, что паттерны экспрессии микроРНК разнообразны и пациент-специфичны. Установлен ряд закономерностей. Уровень экспрессии miR-182 повышен в 81% случаев. Экспрессия miR-31, супрессора метастазирования, подавлена в 56% случаев.

С использованием кластерного анализа выделен кластер коэкспрессии 5-ти микроРНК с преимущественно повышенной экспрессией miR-10b, miR-21, miR-155, miR-34a и miR-335. Предполагается существование ассоциации ко-экспрессирующихся в этом кластере микроРНК с патоморфологическими признаками, в том числе, преимущественным наличием метастазов. При анализе транскрипционной регуляции показано, что все микроРНК из кластера - транскрипционные мишени p53, RelA и NF-kB. Кластеризация и выделение групп микроРНК (signature) позволяют классифицировать пациентов по различным параметрам, выделять особенности, связанные с кластерами, что может расширить представление о роли микроРНК в развитии рака.


Об авторах

Н. И. Поспехова
ФГБУ «Медико-генетический научный центр» РАМН, Москва
Россия


С. В. Поярков
ФГБУ «Медико-генетический научный центр» РАМН, Москва
Россия


Е. Г. Зенит -Журавлёва
ФГБУ «Медико-генетический научный центр» РАМН, Москва
Россия


П. В. Шубин
ФГБУ «Медико-генетический научный центр» РАМН, Москва
Россия


А. В. Карпухин
ФГБУ «Медико-генетический научный центр» РАМН, Москва
Россия


Е. В. Каткова
ФГБУ «Российский онкологический научный центр имени Н.Н. Блохина» РАМН, Москва
Россия


В. А. Хайленко
ФГБУ «Российский онкологический научный центр имени Н.Н. Блохина» РАМН, Москва
Россия


Список литературы

1. Asaga S., Kuo C., Nguyen T. et al. Direct Serum Assay for MicroRNA-21 Concentrations in Early and Advanced Breast Cancer.// Clinical Chemistry. - 2011. - V. 57. – P. 184-91.

2. Augoff K., McCue B., Plow E. and Sossey-Alaoui K. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer.// Mol. Cancer – 2012. – V. 11. – P. 5-17.

3. Bartel D.P. MicroRNAs: target recognition and regulatory functions.// Cell. – 2009. – V. 136(2). – P. 215-33.

4. Chang N., Wang R., Akagi K. et al. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155.// Nature Medicine – 2011. – V. 17. – P. 1275-1283.

5. Eo H.S., Heo J.Y., Choi Y. et al. A pathway-based classification of breast cancer integrating data on differentially expressed genes, copy number variations and MicroRNA target genes. // Mol. Cells. – 2012.

6. Farazi T.A., Spitzer J.I., Morozov P., Tuschl T. miRNAs in human cancer.// J Pathol. – 2011. – V. 223(2). – P. 102-15.

7. Foubert E., De Craene B. and Berx G. Key signaling nodes in mammary gland development and cancer. The Snail1-Twist1 conspiracy in malignant breast cancer progression // Breast Cancer Res. – 2010. – V. 12. – P. 206-217.

8. Heneghan H.M., Miller N., Kelly R. et al. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. // Oncologist. – 2010. – V. 15(7) - P. 673-82.

9. Gabriely G., Teplyuk N.M., Krichevsky A.M. Context effect: microRNA-10b in cancer cell proliferation, spread and death. //Autophagy. - 2011 - V. 7(11). – P. 1384-6.

10. Guttilla I.K., White B.A. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells // J Biol Chem. – 2009. – V. 284(35). – P. 23204-16.

11. Janga S.C., Mittal N. Construction, structure and dynamics of post-transcriptional regulatory network directed by RNA-binding proteins.// Adv. Exp. Med. Biol. – 2011. – V. 722. – P. 103-17.

12. Jiang J., Sun X., Wang W. et al. Tumor microRNA-335 expression is associated with poor prognosis in human glioma//. Med. Oncol. – 2012. May 27

13. Jiang S., Zhang H.W., Lu M.H. et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene.// Cancer Res. – 2010. – V. 70(8). – P. 3119-27.

14. Kastl L., Brown I., Schofield A.C. miRNA-34a is associated with docetaxel resistance in human breast cancer cells.// Breast Cancer Res. Treat. – 2012. – V. 131(2). – P.445-54.

15. Kong W., He L., CoppolaM. et al. MicroRNA-155 Regulates Cell Survival, Growth, and Chemosensitivity by Targeting FOXO3a in Breast Cancer.// J. Biol. Chem. – 2010. – V. 285(23). – P. 17869–17879.

16. Kong W., Yang H., He L. et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA.// Mol. Cell. Biol. – 2008. – V. 28. – P. 6773–6784.

17. Lu Z., Liu M., Stribinskis V. et al. microRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. // Oncogene. – 2008. – V. 27. – P. 4373–4379.

18. Lyng M.B., Lænkholm A.V., Søkilde R. et al. Global microRNA expression profiling of high-risk ER+ breast cancers from patients receiving adjuvant tamoxifen monotherapy: a DBCG study.// PLoS One. – 2012. – V. 7(5). e36170

19. Mattie M.D., Benz C.C., Bowers J. et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies.// Mol. Cancer – 2006. – V. 5. – P. 24.

20. Mattiske S., Suetani R.J., Neilsen P.M., Callen DF. The Oncogenic Role of miR-155 in Breast Cancer.// Cancer Epidemiol. Biomarkers Prev. – 2012. – V. 21(8). – P. 1236-43.

21. Moskwa P., Buffa F.M., Pan Y. et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors.// Mol. Cell. – 2011. - V.41(2). – P. 210-20.

22. Niu J., Shi Y., Tan G. et al. DNA damage induces NF-κB-dependent microRNA-21 up-regulation and promotes breast cancer cell invasion.// J. Biol. Chem. – 2012. – V. 287(26). – P. 21783-95.

23. Ogino S., Fuchs C.S., Giovannucci E. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine.// Expert Rev. Mol. Diagn. – 2012. – V. 12(6). – P. 621-8.

24. Peurala H., Greco D., Heikkinen T. et al. MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer.// PLoS One. – 2011. – V. 6(11):e26122.

25. Png K.J., Yoshida M., Zhang X.H. et al. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer.// Genes Dev. – 2011. – V. 25(3). – P. 226-31.

26. Rao X., Di Leva G., Li M. et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways.// Oncogene. – 2011. – V. 30(9). – P. 1082-97.

27. Roth С., Rack B., Müller V. et al. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer // Breast Cancer Res. - 2010. – V. 12, R90.

28. Sato F., Tsuchiya S., Meltzer S.J., Shimizu K. MicroRNAs and epigenetics.// FEBS J. – 2011. – V. 278(10). – P. 1598-609.

29. Scott G.K., Goga A., Bhaumik D. Et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b.//J. Biol. Chem. - 2007. – V. 282(2). – P. 1479-86.

30. Shah M. & Calin G. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer // Genome Medicine – 2011. – V. 3. – P. 56-59.

31. Si M.L., Zhu S., Wu H. et al. miR-21-mediated tumor growth. // Oncogene. – 2007. – V. 26. – P. 2799–803.

32. Sorlie T., Perou C.M., Tibshirani R. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications// Proc. Natl. Acad. Sci. USA. - 2001. – V. 98. – P. 10869–74.

33. Sorlie T., Wang Y., Xiao C. et al. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms.// BMC. – Genomics. – 2006. – V. 7. – P. 127.

34. Sossey-Alaoui K., Downs-Kelly E., Das M. et al. WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade.// Int. J. Cancer – 2011. – V. 129(6). – P.1331-1343.

35. Taganov K.D., Boldin M.P., Chang K.J., Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses.// Proc. Natl. Acad. Sci. U.S.A. – 2006. – V. 103. – P. 12481–12486.

36. Valastyan S., Reinhardt F., Benaich N. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis.// Cell – 2009. – V. 137. – P. 1032-46.

37. Vickers M.M., Bar J., Gorn-Hondermann I. et al. Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. // Clin. Exp. Metastasis. – 2012. – V. 29(2). – P.123-32.

38. Voliniaa S., Galassoa M., Sanaa M. et al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. // PNAS – 2012. – V. 109. – P. 3024–3029.

39. Wang H., Tan G., Dong L. et al. Circulating MiR- 125b as a marker predicting chemoresistance in breast cancer.// PLoS One. – 2012. – V. 7(4):e34210.

40. Yan L., Huang X., Shao Q. et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis // RNA. - 2008 – V. 14(11). - P. 2348-60.

41. Yan Z., Xiong Y., Xu W. et al. Identification of hsamiR-335 as a prognostic signature in gastric cancer.// PLoS One. – 2012. – V. 7(7):e40037.

42. Zhao J.J., Lin J., Yang H. et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. //J. Biol. Chem. – 2008. – V. 283(45). – P. 31079-86.

43. Zhu S., Si M.L., Wu H. et al. microRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1).// J. Biol. Chem. – 2007. – V. 282. – P. 14328–14336.


Дополнительные файлы

Для цитирования: Поспехова Н.И., Поярков С.В., Зенит -Журавлёва Е.Г., Шубин П.В., Карпухин А.В., Каткова Е.В., Хайленко В.А. ЭКСПРЕССИОННЫЙ АНАЛИЗ МИКРОРНК ДЛЯ ДИАГНОСТИКИ И ПРОГНОЗА РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ. Злокачественные опухоли. 2012;2(2):90-97. https://doi.org/10.18027/2224-5057-2012-2-90-97

For citation: ., ., ., ., ., ., . . Malignant tumours. 2012;2(2):90-97. (In Russ.) https://doi.org/10.18027/2224-5057-2012-2-90-97

Просмотров: 253

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2224-5057 (Print)
ISSN 2587-6813 (Online)